The Effect of Levamlodipine in Glucose-Induced Acute Model of Glaucoma in Rabbits

Authors

  • Waleed K. Abdulsahib Department of Pharmacology and Toxicology, College of Pharmacy, Al-Farahidi University, Baghdad, Iraq https://orcid.org/0000-0002-8851-5783

DOI:

https://doi.org/10.3889/oamjms.2021.6440

Keywords:

Acute glaucoma, Levamlodipine, Pilocarpine, Glucose, Rabbits

Abstract

BACKGROUND: Loss of vision and irreversible blindness are the main consequences of glaucoma. There are two main types of glaucoma: Chronic and acute.

AIM: This work aimed to evaluate the intraocular effect of levamlodipine on the acute model of glaucoma in rabbits.

METHODS: Eighteen white albino rabbits of both sexes weighing about 2 kg. We divided them into three groups (six animals in each group) used in the experiment. We use the right eye to evaluate the effect of the test drug and used the left eye as a control (vehicle only). We used the first group to evaluate levamlodipine (0.25%), the second group to estimate levamlodipine (0.5%), and the third group to assess pilocarpine 2% (positive control). Drugs were administered 30 min before induction.

RESULTS: Glucose (5%) fluid produces a significant intraocular pressure (IOP) elevation after 30 min of administration in the left eye (p ˂ 0.001). Pre-treatment topical administration of levamlodipine (0.25%) prevents the rise in the IOP significantly (p ˂ 0.001) in the right eye when compared to the control group (left eye). Moreover, compared with the eyes of the control group at all stages of the experiment, the topical administration of levamlodipine (0.5%) has a significant preventable effect (p ˂ 0.001), compared with the control group. The IOP of the local pilocarpine (2%) in the third group was significantly decreased (p ˂ 0.001). Finally, compared with levamlodipine (0.5%), pilocarpine has a more significant effect in preventing a rapid increase in intraocular pressure (p ˂ 0.001).

CONCLUSION: Levamlodipine is a promising therapeutic agent for patients vulnerable to acute glaucoma.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Twa MD. Intraocular pressure and glaucoma. In: Optometry and Vision Science. Vol. 95. United States: American Academy of Optometry; 2018. p. 83-5. https://doi.org/10.1097/opx.0000000000001183 DOI: https://doi.org/10.1097/OPX.0000000000001183

Abdulsahib WK, Al-Zubaidy A, Sahib HB, Kathem SH. Tolerable ocular hypotensive effect of topically applied sildenafil in ocular in normotensive and betamethasone-induced hypertensive rabbits. Int J Pharm Sci Rev Res. 2015;35(1):96-102.

Mead B, Tomarev S. Evaluating retinal ganglion cell loss and dysfunction. Exp Eye Res. 2016;151:96-106. https://doi.org/10.1016/j.exer.2016.08.006 PMid:27523467 DOI: https://doi.org/10.1016/j.exer.2016.08.006

Wolvaardt E, Stevens S. Measuring intraocular pressure. Community Eye Health. 2019;32(107):56-7. PMid:32123477

Cho H, Kee C. Population-based glaucoma prevalence studies in Asians. Surv Ophthalmol. 2014;59(4):434-47. PMid:24837853 DOI: https://doi.org/10.1016/j.survophthal.2013.09.003

Striessnig J, J Ortner N, Pinggera A. Pharmacology of L-type calcium channels: novel drugs for old targets? Curr Mol Pharmacol. 2015;8(2):110-22. https://doi.org/10.2174/1874467208666150507105845 PMid:25966690 DOI: https://doi.org/10.2174/1874467208666150507105845

Hofmann F, Flockerzi V, Kahl S, Wegener JW. L-type CaV1. 2 calcium channels: from in vitro findings to in vivo function. Physiol Rev. 2014;94(1):303-26. https://doi.org/10.1152/physrev.00016.2013 PMid:24382889 DOI: https://doi.org/10.1152/physrev.00016.2013

Bulsara KG, Cassagnol M. Amlodipine. Treasure Island, FL: StatPearls Publishing; 2020.

Plummer CE, Bras D, Grozdanic S, Komáromy AM, McLellan G, Miller P, et al. Prophylactic anti-glaucoma therapy in dogs with primary glaucoma: A practitioner survey of current medical protocols. Vet Ophthalmol. 2021;24(Suppl 1):96-108. https://doi.org/10.1111/vop.12820 PMid:32920915 DOI: https://doi.org/10.1111/vop.12820

Lu Y, Yin J, Wu X, Fan Y, Liu F. Comparative effects of 2.5mg levamlodipine and 5mg amlodipine on vascular endothelial function and atherosclerosis. Pak J Pharm Sci. 2019;32(5(Special)):2433-6. PMid:31894030

Abdulsahib WK, Abood SJ. Effect of digoxin ophthalmic solutions on the intraocular pressure in rabbits. Drug Invent Today. 2020;14(1):5-9.

Hussein MQ, Kadim HM, Abdulsahib WK. Effect of telmisartan on intra-ocular pressure in induced open angle glaucoma in rabbits. Int J Sci Res. 2015;6:2319-7064.

Araie M, Mayama C. Use of calcium channel blockers for glaucoma. Prog Retin Eye Res. 2011;30(1):54-71. https://doi.org/10.1016/j.preteyeres.2010.09.002 PMid:20933604 DOI: https://doi.org/10.1016/j.preteyeres.2010.09.002

Abdulsahib WK. Future therapeutic strategies in the glaucoma management. J Adv Med Pharm Sci. 2020;22(7):40-9. DOI: https://doi.org/10.9734/jamps/2020/v22i730184

Abdulsahib WK and AJS. The effect of calcium channel blocker in the betamethasone-induced glaucoma model in rabbits. J Adv Pharm Educ Res. 2021;11(1):135-40. https://doi.org/10.51847/2d3w8vfsvt DOI: https://doi.org/10.51847/2d3w8vfSVt

Fadheel OQ, AL-Jawad FH, Abdulsahib WK, Ghazi HF. Effect Felodipine against Pilocarpine induced seizures in rats. Int J Pharm Sci Rev Res. 2018;52(1):54-60.

Baumann L, Gerstner A, Zong X, Biel M, Wahl-Schott C. Functional characterization of the L-type Ca2+ channel Cav1. 4α1 from mouse retina. Invest Ophthalmol Vis Sci. 2004;45(2):708-13. https://doi.org/10.1167/iovs.03-0937 PMid:14744918 DOI: https://doi.org/10.1167/iovs.03-0937

Shim MS, Kim KY, Ju WK. Role of cyclic AMP in the eye with glaucoma. BMB Rep. 2017;50(2):60. PMid:27916026 DOI: https://doi.org/10.5483/BMBRep.2017.50.2.200

Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane database Syst Rev. 2017;1(1):CD006539. PMid:28122126 DOI: https://doi.org/10.1002/14651858.CD006539.pub4

Reves JG, Kissin I, Lell WA, Tosone S. Calcium entry blockers: Uses and implications for anesthesiologists. J Am Soc Anesthesiol. 1982;57(6):504-18. https://doi.org/10.1097/00000542-198212000-00013 PMid:6756213 DOI: https://doi.org/10.1097/00000542-198212000-00013

Li X, Wang C, Li T, Liu Y, Liu S, Tao Y, et al. Bioequivalence of levamlodipine besylate tablets in healthy Chinese subjects: A single-dose and two-period crossover randomized study. BMC Pharmacol Toxicol. 2020;21(1):80. https://doi.org/10.1186/s40360-020-00459-6 PMid:33213527 DOI: https://doi.org/10.1186/s40360-020-00459-6

Erickson KA, Schroeder A, Netland PA. Verapamil increases outflow facility in the human eye. Exp Eye Res. 1995;61(5):565-7. https://doi.org/10.1016/s0014-4835(05)80050-8 PMid:8654499 DOI: https://doi.org/10.1016/S0014-4835(05)80050-8

Majeed M, Nagabhushanam K, Natarajan S, Vaidyanathan P, Karri SK, Jose JA. Efficacy and safety of 1% forskolin eye drops in open angle glaucoma an open label study. Saudi J Ophthalmol. 2015;29(3):197-200. https://doi.org/10.1016/j.sjopt.2015.02.003 PMid:26155078 DOI: https://doi.org/10.1016/j.sjopt.2015.02.003

Göbel K, Rüfer F, Erb C. Physiology of aqueous humor formation, diurnal fluctuation of intraocular pressure and its significance for glaucoma. Klin Monbl Augenheilkd. 2011;228(2):104-8. PMid:21328169 DOI: https://doi.org/10.1055/s-0029-1246040

Peracchia C. Calmodulin-mediated regulation of gap junction channels. Int J Mol Sci. 2020;21(2):485. PMid:31940951 DOI: https://doi.org/10.3390/ijms21020485

Plumbly W, Brandon N, Deeb TZ, Hall J, Harwood AJ. L-type voltage-gated calcium channel regulation of in vitro human cortical neuronal networks. Sci Rep. 2019;9(1):13810. https://doi.org/10.1038/s41598-019-50226-9 PMid:31554851 DOI: https://doi.org/10.1038/s41598-019-50226-9

Yang Y, Yu L, Wu Z, Yu J, Zhang J, Chen Q, et al. Synergic effects of levamlodipine and bisoprolol on blood pressure reduction and organ protection in spontaneously hypertensive rats. CNS Neurosci Ther. 2012;18(6):471-4. https://doi.org/10.1111/j.1755-5949.2012.00323.x PMid:22672299 DOI: https://doi.org/10.1111/j.1755-5949.2012.00323.x

Toris CB, Gleason ML, Camras CB, Yablonski ME. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol. 1995;113(12):1514-7. https://doi.org/10.1001/archopht.1995.01100120044006 PMid:7487618 DOI: https://doi.org/10.1001/archopht.1995.01100120044006

Yamada H, Chen Y-N, Aihara M, Araie M. Neuroprotective effect of calcium channel blocker against retinal ganglion cell damage under hypoxia. Brain Res. 2006;1071(1):75-80. https://doi.org/10.1016/j.brainres.2005.11.072 PMid:16413513 DOI: https://doi.org/10.1016/j.brainres.2005.11.072

Quill B, Irnaten M, Docherty NG, McElnea EM, Wallace DM, Clark AF, et al. Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells. Br J Ophthalmol. 2015;99(7):1009-14. https://doi.org/10.1136/bjophthalmol-2014-306093 PMid:25795916 DOI: https://doi.org/10.1136/bjophthalmol-2014-306093

Abdulsahib WK, Fadhil OQ, Tizkam HH. Effect of topically applied nimodipine on the intraocular pressure on ocular normotensive and betamethasone-induced hypertensive eyes in rabbits. Int J Res Pharm Sci. 2019;10(4):2727-32. https://doi.org/10.26452/ijrps.v10i4.1537 PMid:11163049 DOI: https://doi.org/10.26452/ijrps.v10i4.1537

Greller AL, Hoffman AR, Liu C, Ying G, Vudathala DK, Acland GM, et al. Effects of the topically applied calcium-channel blocker flunarizine on intraocular pressure in clinically normal dogs. Am J Vet Res. 2008;69(2):273-8. https://doi.org/10.2460/ajvr.69.2.273 PMid:18241026 DOI: https://doi.org/10.2460/ajvr.69.2.273

Maltese A, Bucolo C. Pharmacokinetic profile of topical flunarizine in rabbit eye and plasma. J Ocul Pharmacol Ther. 2003;19(2):171-9. https://doi.org/10.1089/108076803321637708 PMid:12804062 DOI: https://doi.org/10.1089/108076803321637708

Ganekal S, Dorairaj S, Jhanji V, Kudlu K. Effect of topical calcium channel blockers on intraocular pressure in steroid-induced glaucoma. J Curr glaucoma Pract. 2014;8(1):15-9. https://doi.org/10.5005/jp-journals-10008-1155 PMid:26997802 DOI: https://doi.org/10.5005/jp-journals-10008-1155

Mikheytseva IN, Kashintseva LT, Krizhanovsky GN, Kopp OP, Lipovetskaya EM. The influence of the calcium channel blocker verapamil on experimental glaucoma. Int Ophthalmol. 2004;25(2):75-9. https://doi.org/10.1023/b:inte.0000031737.08988.b0 PMid:15290885 DOI: https://doi.org/10.1023/B:INTE.0000031737.08988.b0

Downloads

Published

2021-07-25

How to Cite

1.
Abdulsahib WK. The Effect of Levamlodipine in Glucose-Induced Acute Model of Glaucoma in Rabbits. Open Access Maced J Med Sci [Internet]. 2021 Jul. 25 [cited 2024 Nov. 21];9(A):505-9. Available from: https://oamjms.eu/index.php/mjms/article/view/6440