The The Significance of Differences in Melanocortin 3 Levels and their Relationship with Pulmonary Tuberculosis and Body Mass Index
DOI:
https://doi.org/10.3889/oamjms.2021.6517Keywords:
Active Tuberculosis, Tuberculosis, Melanocortin 3 levels, Melanocortin-3, Body mass indexAbstract
BACKGROUND: Melanocortin 3 Receptors (MC3R) levels plays a role in many biological systems, including energy homeostasis and regulation of fat metabolism. However, very few have researched the relationship between MC3R and tuberculosis (TB) and body mass index.
AIM: This study explores the differences in serum MC3R levels in active TB, household contacts, and control groups, as well as at different body mass index status. This study tries to find out the relationship between MC3R and other variables.
METHODS AND MATERIALS: Blood samples were taken from 53 active TB patients, 49 household contacts, and 30 healthy people as controls. The 132 samples were subjected to IGRA and ELISA examinations to determine differences in MC3R levels in all groups.
RESULTS: The highest mean of MC3R levels were found in the active TB group at 1.259.55 (p = 0.028) and had a positive correlation with a value of p = 0.008. In the sex group, men had the highest levels (p = 0.551). In the 30–49 year age group, the median value increased significantly in the three groups (p = 0.028), and there was a correlation between MC3R and the 17–29 year age group, although the correlation was negative (p = 0.021), in the 30–49 year age group with a positive correlation (p = 0.050). The mean MC3R value increased significantly in the overweight group in the three groups (p = 0.006) but did not significantly correlate.
CONCLUSION: The high level of MC3R in TB patients is related to its role as a defence against microbes that enter the body through the immune process to prevent further infection and inflammation. Meanwhile, high levels of MC3R in excess Body mass index were associated with the function of MC3R as an inhibitor of pro-opiomelanocortin (POMC) neurons to release α-MSH.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Kim J, Keshavjee S, Atun R. Health systems performance in managing tuberculosis: Analysis of tuberculosis care cascades among high-burden and non-highburden countries. J Glob Health. 2019;9(1):010423. https://doi.org/10.7189/jogh.09.010423 DOI: https://doi.org/10.7189/jogh.09.010423
Chakaya J, Khan M, Ntoumi F, Aklillu E, Fatima R, Mwaba P, et al. Global tuberculosis report 2020 reflections on the global TB burden, treatment and prevention efforts. Int J Infect Dis. 2021;2021:107. https://doi.org/10.1016/j.ijid.2021.02.107 DOI: https://doi.org/10.1016/j.ijid.2021.02.107
Global Tuberculosis Report; 2018. Availale from: http://www.apps.who.int/bookorders. [Last accessed on 2021 Apr 23].
Jilani TN, Avula A, Gondal AZ, Siddiqui AH. Active Tuberculosis. Treasure Island, FL: StatPearls Publishing; 2021.
Turner RD, Chiu C, Churchyard GJ, Esmail H, Lewinsohn DM, Gandhi NR, et al. Tuberculosis infectiousness and host susceptibility. J Infect Dis. 2017;216(Suppl 6):S636-43. https://doi.org/10.1093/infdis/jix361 PMid:29112746 DOI: https://doi.org/10.1093/infdis/jix361
Eom JS, Kim I, Kim WY, Jo EJ, Mok J, Kim MH, et al. Household tuberculosis contact investigation in a tuberculosis-prevalent country. Medicine (United States). 2018;97(3):e9681. https://doi.org/10.1097/MD.0000000000009681 PMid:29505017 DOI: https://doi.org/10.1097/MD.0000000000009681
Adane A, Damena M, Weldegebreal F, Mohammed H. Prevalence and associated factors of tuberculosis among adult household contacts of smear positive pulmonary tuberculosis patients treated in public health facilities of Haramaya district, Oromia Region, Eastern Ethiopia. Tuberc Res Treatment. 2020;2020:1-7. https://doi.org/10.1155/2020/6738532 DOI: https://doi.org/10.1155/2020/6738532
Adams LA, Möller M, Nebel A, Schreiber S, Van Der Merwe L, Van Helden PD, et al. Polymorphisms in MC3R promoter and CTSZ 3′UTR are associated with tuberculosis susceptibility. Eur J Hum Genet. 2011;19(6):676-81. https://doi.org/10.1038/ejhg.2011.1 PMid:21368909 DOI: https://doi.org/10.1038/ejhg.2011.1
Hayward S, Harding RM, McShane H, Tanner R. Factors influencing the higher incidence of tuberculosis among migrants and ethnic minorities in the. F1000Res. 2018;7:461. https://doi.org/10.12688/f1000research.14476.2 PMid:30210785 DOI: https://doi.org/10.12688/f1000research.14476.2
Begriche K, Girardet C, McDonald P, Butler AA. Melanocortin-3 receptors and metabolic homeostasis. Prog Mol Biol Transl Sci. 2013;114:109-46. https://doi.org/10.1016/B978-0-12-386933-3.00004-2 PMid:23317784 DOI: https://doi.org/10.1016/B978-0-12-386933-3.00004-2
Hruby A, Hu FB. The epidemiology of obesity: A big picture. Pharmacoeconomics. 2015;33(7):673-89. https://doi.org/10.1007/s40273-014-0243-x PMid:25471927 DOI: https://doi.org/10.1007/s40273-014-0243-x
Chapelot D, Charlot K. Physiology of energy homeostasis: Models, actors, challenges and the glucoadipostatic loop. Metabolism. 2019;92:11-25. https://doi.org/10.1016/j.metabol.2018.11.012 PMid:30500561 DOI: https://doi.org/10.1016/j.metabol.2018.11.012
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: From metabolism to aging. Protein Cell. 2021;2021:1-28. https://doi.org/10.1007/s13238-021-00834-x PMid:33826123 DOI: https://doi.org/10.1007/s13238-021-00834-x
Demidowich AP, Jun JY, Yanovski JA. Polymorphisms and mutations in the melanocortin-3 receptor and their relation to human obesity. Biochim Biophys Acta Mol Basis Dis. 2017;1863(10):2468-76. https://doi.org/10.1016/j.bbadis.2017.03.018 PMid:28363697 DOI: https://doi.org/10.1016/j.bbadis.2017.03.018
Laboratorium teknologi bioassay. Kit Elisa Serum Amiloid A Manusia; 2017. Available from: http://www.bt-laboratory.com/wp-content/uploads/2019/07/Human-Serum-amyloid-ASAA-ELISA-Kit-40.doc. [Last accessed in 2021 April 20].
Clemson CM, Yost J, Taylor AW. The role of Alpha-MSH as a modulator of ocular immunobiology exemplifies mechanistic differences between melanocortins and steroids. Ocular Immunol Inflamm. 2017;25(2):179-89. https://doi.org/10.3109/09273948.2015.1092560 PMid26807874 DOI: https://doi.org/10.3109/09273948.2015.1092560
Trevaskis JL, Gawronska-Kozak B, Sutton GM, McNeil M, Stephens JM, Smith SR, et al. Role of adiponectin and inflammation in insulin resistance of Mc3r and Mc4r knockout mice. Obesity. 2007;15(11):2664-72. https://doi.org/10.1038/oby.2007.318 PMid18070757 DOI: https://doi.org/10.1038/oby.2007.318
Cai M, Hruby VJ. The melanocortin receptor system: A target for multiple degenerative diseases. Curr Protein Pept Sci. 2016;17(5):488-96. https://doi.org/10.2174/1389203717666160226145330 PMid26916163 DOI: https://doi.org/10.2174/1389203717666160226145330
Wang W, Guo DY, Lin YJ, Tao YX. Melanocortin regulation of inflammation. Front Endocrinol. 2019;10:683. https://doi.org/10.3389/fendo.2019.00683 PMid31649620 DOI: https://doi.org/10.3389/fendo.2019.00683
Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. Pathog Dis. 2018;76(4):37. https://doi.org/10.1093/femspd/fty037 PMid29762680 DOI: https://doi.org/10.1093/femspd/fty037
Hunter RL. The pathogenesis of tuberculosis: The early infiltrate of post-primary (adult pulmonary) tuberculosis: A distinct disease entity. Front Immunol. 2018;9:2108. https://doi.org/10.3389/fimmu.2018.02108. DOI: https://doi.org/10.3389/fimmu.2018.02108
Khan A, Singh VK, Hunter RL, Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J Leukocyte Biol. 2019;106(2):275-82. https://doi.org/10.1002/JLB. MR0318-095RR PMid30938876 DOI: https://doi.org/10.1002/JLB.MR0318-095RR
Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The immune escape mechanisms of Mycobacterium tuberculosis. Int J Mol Sci. 2019;20(2):340. https://doi.org/10.3390/ijms20020340 DOI: https://doi.org/10.3390/ijms20020340
Getting SJ, Lam CW, Chen AS, Grieco P, Perretti M. Melanocortin 3 receptors control crystal-induced inflammation. FASEB J. 2006;20(13):2234-41. https://doi.org/10.1096/fj.06-6339com PMid17077300 DOI: https://doi.org/10.1096/fj.06-6339com
Patel HB, Leoni G, Melendez TM, Sampaio AL, Perretti M. Melanocortin control of cell trafficking in vascular inflammation. Adv Exp Med Biol. 2010;681:88-106. https://doi.org/10.1007/978-1-4419-6354-3_7 PMid21222262 DOI: https://doi.org/10.1007/978-1-4419-6354-3_7
Lippert RN, Ellacott KL, Cone RD. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology. 2014;155(5):1718-27. https://doi.org/10.1210/en.2013-2049 PMid24605830 DOI: https://doi.org/10.1210/en.2013-2049
Dunigan AI, Olson DP, Roseberry AG. VTA MC3R neurons control feeding in an activity and sex-dependent manner in mice Title: VTA MC3R neurons control feeding by sex. BioRxiv. 2021;2021:434586. https://doi.org/10.1101/2021.03.09.434586 DOI: https://doi.org/10.1101/2021.03.09.434586
Amarya S, Singh K, Sabharwal M. Changes during aging and their association with malnutrition. J Clin Gerontol Geriatr. 2015;6(3):78-84. https://doi.org/10.1016/j.jcgg.2015.05.003 DOI: https://doi.org/10.1016/j.jcgg.2015.05.003
LeBouef T, Whited L. Physiology, Autonomic Nervous System. Treasure Island, FL: StatPearls Publishing; 2019.
Li WD, Joo EJ, Furlong EB, Galvin M, Abel K, Bell CJ, et al. Melanocortin 3 receptor (MC3R) gene variants in extremely obese women. Int J Obes. 2000;24(2):206-10. https://doi.org/10.1038/sj.ijo.0801114 PMid10702772 DOI: https://doi.org/10.1038/sj.ijo.0801114
Date Y, Shimbara T, Koda S, Toshinai K, Ida T, Murakami N, et al. Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab. 2006;4(4):323-31. https://doi.org/10.1016/j.cmet.2006.09.004 PMid17011505 DOI: https://doi.org/10.1016/j.cmet.2006.09.004
Girardet C, Marks DL, Butler AA. Melanocortin-3 receptors expressed on agouti-related peptide neurons inhibit feeding behavior in female mice. Obesity. 2018;26(12):1849-55. https://doi.org/10.1002/oby.22306 PMid30426710 DOI: https://doi.org/10.1002/oby.22306
Mavrikaki M, Girardet C, Kern A, Brantley AF, Miller CA, Macarthur H, et al. Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss. Mol Metab. 2016;5(7):566-79. https://doi.org/10.1016/j.molmet.2016.05.002 PMid27408780 DOI: https://doi.org/10.1016/j.molmet.2016.05.002
Butler AA, Cone RD. The melanocortin receptors: Lessons from knockout models. Neuropeptides. 2002;36(2-3):77-84. https://doi.org/10.1054/npep.2002.0890 PMid12359499 DOI: https://doi.org/10.1054/npep.2002.0890
Girardet C, Butler AA. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim Biophys Acta Mol Basis Dis. 2014;1842(3):482-94. https://doi.org/10.1016/j.bbadis.2013.05.004 PMid23680515 DOI: https://doi.org/10.1016/j.bbadis.2013.05.004
Zegers D, Beckers S, Hendrickx R, Van Camp JK, Van Hoorenbeeck K, Desager KN, et al. Prevalence of rare MC3R variants in obese cases and lean controls. Endocrine. 2013;44(2):386-90. https://doi.org/10.1007/s12020-012-9862-1 PMid23264184 DOI: https://doi.org/10.1007/s12020-012-9862-1
Yang Z. Human Melanocortin-3 Receptor: Structure-function Relationship of DPLIY Motif and Helix 8 and Biased Signaling; 2016.
Mencarelli M, Dubern B, Alili R, Maestrini S, Benajiba L, Tagliaferri M, et al. Rare melanocortin-3 receptor mutations with in vitro functional consequences are associated with human obesity. Hum Mol Genet. 2011;20(2):392-9. https://doi.org/10.1093/hmg/ddq472 PMid:21047972 DOI: https://doi.org/10.1093/hmg/ddq472
Downloads
Published
How to Cite
License
Copyright (c) 2021 Andi Tenriola, Najdah Hidayah, Subair Subair, Muhammad Nasrum Massi, Irda Handayani, Rosdiana Natzir, Irawaty Djaharuddin, Handayani Halik (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0