Antihyperglycemic, Endothelial protection and Toxicity study of Basil Leaves Extract on Diabetic Rats

Authors

  • Sry Suryani Widjaja Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0001-9738-9339
  • Rusdiana Rusdiana Department of Biochemistry https://orcid.org/0000-0002-7308-9291
  • Maya Savira Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Rina Amelia Department of Community Medicine and Public Health, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0002-0419-9622

DOI:

https://doi.org/10.3889/oamjms.2021.6520

Keywords:

Antihyperglycemic, Basil leaves, Blood glucose, Diabetic rats, Endothelial dysfunction, Toxicity

Abstract

BACKGROUND: Diabetes Mellitus (DM) remains a serious debilitating global health problem in low- and middle-income countries with rising incidence of DM-related complications due to ineffective Diabetic control. Herbs of the Ocimum family, especially Ocimum basilicum or basil leaves, have been investigated for their antihyperglycemic properties.

AIM: This study aimed to demonstrate the antihyperglycemic effect, endothelial protection, and toxicity of basil leaves on Diabetes-induced Wistar rats in vivo.

METHODS: Streptozosin injections were used to induced diabetes in male Wistar rats. Basil leaves extracts 100, 300, and 1000 mg/kg BW were introduced to diabetic rats. Blood glucose levels (BGL), soluble Advanced Glycation End, tumor necrosis factor-α, interleukin (IL)-6, IL-2 were measured using enzyme-linked immunosorbent assay. Kidney and liver functions together with the histopathology reports were reported for acute, subacute, and chronic toxicity studies.

RESULTS: Basil leaves exposure significantly lowers BGL (p < 0.00), but yielded no statistically significant difference between extract doses. Hemostatic parametersshowed significantly reduced endothelial dysfunction markers for all doses compared to control. Toxicity study yielded no differences between control and any doses of basil leaves in all acute, subacute, and chronic toxicity studies. Histopathological findings exhibited no evidence of tissue damage on the liver, kidney, heart, pancreas, lung, and lymph tissues in either control or experiment rats.

CONCLUSIONS: Basil leaves exposure were positively associated with lower glucose level, lower endothelial activation markers on Diabetic rats. The toxicity and histopathological results of the extract are on par with control.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. https://doi.org/10.1038/nrendo.2017.151 PMid:29219149 DOI: https://doi.org/10.1038/nrendo.2017.151

Magliano DJ, Islam RM, Barr EL, Gregg EW, Pavkov ME, Harding JL, et al. Trends in incidence of total or Type 2 diabetes: Systematic review. BMJ. 2019;366:l5003. https://doi.org/10.1136/bmj.l5003 PMid:31511236 DOI: https://doi.org/10.1136/bmj.l5003

Afroz A, Alramadan MJ, Hossain MN, Romero L, Alam K, Magliano DJ, et al. Cost-of-illness of Type 2 diabetes mellitus in low and lower-middle income countries: A systematic review. BMC Health Serv Res. 2018;18(1):972. https://doi.org/10.1186/s12913-018-3772-8 PMid:30558591 DOI: https://doi.org/10.1186/s12913-018-3772-8

Manne-Goehler J, Geldsetzer P, Agoudavi K, Andall-Brereton G, Aryal KK, Bicaba BW, et al. Health system performance for people with diabetes in 28 low-and middle-income countries: A cross-sectional study of nationally representative surveys. PLoS Med. 2019;16(3):e1002751. https://doi.org/10.1371/journal.pmed.1002751 PMid:30822339 DOI: https://doi.org/10.1371/journal.pmed.1002751

Schwartz SS, Epstein S, Corkey BE, Grant SF, Gavin JR, Aguilar RB. The time is right for a new classification system for diabetes: Rationale and implications of the β-cell-centric classification schema. Diabetes Care. 2016;39(2):179-86. https://doi.org/10.2337/dci16-0011 PMid:26798148 DOI: https://doi.org/10.2337/dc15-1585

Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546-51. https://doi.org/10.4103/2230-8210.183480 PMid:27366724 DOI: https://doi.org/10.4103/2230-8210.183480

Mahdi A, Jiao T, Yang J, Kövamees O, Alvarsson M, von Heijne M, et al. The effect of glycemic control on endothelial and cardiac dysfunction induced by red blood cells in Type 2 diabetes. Front Pharmacol. 2019;10:861. https://doi.org/10.3389/fphar.2019.00861 PMid:31427970 DOI: https://doi.org/10.3389/fphar.2019.00861

Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17(1):121. https://doi.org/10.1186/s12933-018-0763-3 PMid:30170601 DOI: https://doi.org/10.1186/s12933-018-0763-3

Hasan F, Hasan B. Antidiabetic medications and mortality reduction: A shift from surrogate to clinical endpoints. Ther Adv Endocrinol Metab. 2017;8(12):173-4. https://doi.org/10.1177/2042018817737955 PMid:29238516 DOI: https://doi.org/10.1177/2042018817737955

Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, Del Cañizo-Gómez FJ. Update on the treatment of Type 2 diabetes mellitus. World J Diabetes. 2016;7(17):354-95. https://doi.org/10.4239/wjd.v7.i17.354 PMid:27660695 DOI: https://doi.org/10.4239/wjd.v7.i17.354

American Diabetes Association. 4. Lifestyle management: Standards of medical care in diabetes-2018. Diabetes Care. 2018;41 Suppl 1:S38-50. https://doi.org/10.2337/dc18-s004 PMid:29222375 DOI: https://doi.org/10.2337/dc18-S004

Polonsky WH, Henry RR. Poor medication adherence in Type 2 diabetes: Recognizing the scope of the problem and its key contributors. Patient Prefer Adherence. 2016;10:1299-307. https://doi.org/10.2147/ppa.s106821 PMid:27524885 DOI: https://doi.org/10.2147/PPA.S106821

Cutler RL, Fernandez-Llimos F, Frommer M, Benrimoj C, Garcia-Cardenas V. Economic impact of medication non-adherence by disease groups: A systematic review. BMJ Open. 2018;8(1):e016982. https://doi.org/10.1136/bmjopen-2017-016982 PMid:29358417 DOI: https://doi.org/10.1136/bmjopen-2017-016982

Soewondo P, Ferrario A, Tahapary D. Challenges in diabetes management in Indonesia: A literature review. Global Health. 2013;9(1):63. https://doi.org/10.1186/1744-8603-9-63 PMid:24299164 DOI: https://doi.org/10.1186/1744-8603-9-63

Rudianto A, Soewondo P, Waspadji S, Yunir E, Purnamasari D. The Indonesian society of endocrinology’s summary article of diabetes mellitus national clinical practice guidelines. JAFES. 2011;26(1):17-9. https://doi.org/10.15605/jafes.026.01.03 DOI: https://doi.org/10.15605/jafes.026.01.03

El-Beshbishy H, Bahashwan S. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: An in vitro study. Toxicol Ind Health. 2012;28(1):42-50. https://doi.org/10.1177/0748233711403193 PMid:21636683 DOI: https://doi.org/10.1177/0748233711403193

Ezeani C, Ezenyi I, Okoye T, Okoli C. Ocimum basilicum extract exhibits antidiabetic effects via inhibition of hepatic glucose mobilization and carbohydrate metabolizing enzymes. J Intercult Ethnopharmacol. 2017;6(1):22-8. https://doi.org/10.5455/jice.20161229054825 PMid:28163956 DOI: https://doi.org/10.5455/jice.20161229054825

Widjaja SS, Rusdiana R, Savira M. Glucose lowering effect of basil leaves in diabetic rats. Open Access Maced J Med Sci. 2019;7(9):1415-7. https://doi.org/10.3889/oamjms.2019.293 PMid:31198445 DOI: https://doi.org/10.3889/oamjms.2019.293

Antora RA, Salleh RM. Antihyperglycemic effect of Ocimum plants: A short review. Asian Pac J Trop Biomed. 2017;7(8):755-9. https://doi.org/10.1016/j.apjtb.2017.07.010 DOI: https://doi.org/10.1016/j.apjtb.2017.07.010

Sari FA, Sandhika W, Yuliawati TH. Tulsi (Ocimum sanctum) leaf ethanol extract reduces inflammatory cell infiltration in aspirin-induced gastritis rats. JKB. 2020;31(1):49. https://doi.org/10.21776/ub.jkb.2020.031.01.10 DOI: https://doi.org/10.21776/ub.jkb.2020.031.01.10

Arozal W, Louisa M, Soetikno V. Selected Indonesian medicinal plants for the management of metabolic syndrome: Molecular basis and recent studies. Front Cardiovasc Med. 2020;7:82. https://doi.org/10.3389/fcvm.2020.00082 PMid:32435657 DOI: https://doi.org/10.3389/fcvm.2020.00082

Pengpid S, Peltzer K. Use of traditional medicines and traditional practitioners by children in Indonesia: Findings from a national population survey in 2014-2015. J Multidiscip Healthc. 2019;12:291-8. https://doi.org/10.2147/jmdh.s203343 PMid:31114218 DOI: https://doi.org/10.2147/JMDH.S203343

Vázquez-Fresno R, Rosana AR, Sajed T, Onookome-Okome T, Wishart NA, Wishart DS. Herbs and spices-biomarkers of intake based on human intervention studies-a systematic review. Genes Nutr. 2019;14(1):18. https://doi.org/10.1186/s12263-019-0636-8 PMid:31143299 DOI: https://doi.org/10.1186/s12263-019-0636-8

Loha M, Mulu A, Abay SM, Ergete W, Geleta B. Acute and subacute toxicity of methanol extract of Syzygium guineense leaves on the histology of the liver and kidney and biochemical compositions of blood in rats. Evid Based Complement Alternat Med. 2019;2019:5702159. https://doi.org/10.1155/2019/5702159 PMid:30956682 DOI: https://doi.org/10.1155/2019/5702159

Owu DU, Osim EE, Ebong PE. Serum liver enzymes profile of Wistar rats following chronic consumption of fresh or oxidized palm oil diets. Acta Trop. 1998;69(1):65-73. https://doi.org/10.1016/s0001-706x(97)00115-0 PMid:9588242 DOI: https://doi.org/10.1016/S0001-706X(97)00115-0

Thammitiyagodage MG, de Silva NR, Rathnayake C, Karunakaran R, Wgss K, Gunatillka MM, et al. Biochemical and histopathological changes in Wistar rats after consumption of boiled and un-boiled water from high and low disease prevalent areas for chronic kidney disease of unknown etiology (CKDu) in North Central Province (NCP) and its comparison with low disease prevalent Colombo, Sri Lanka. BMC Nephrol. 2020;21(1):38. https://doi.org/10.1186/s12882-020-1693-3 PMid:32005171 DOI: https://doi.org/10.1186/s12882-020-1693-3

Awotunde OS, Adewoye SO, Dhanabal PS, Hawumba J. Subacute toxicity study of aqueous root extract of Terminalia schimperiana in male Wistar rats. Toxicol Rep. 2019;6:825-32. https://doi.org/10.1016/j.toxrep.2019.07.006 PMid:31463203 DOI: https://doi.org/10.1016/j.toxrep.2019.07.006

Kochhar A, Sharma N, Sachdeva R. Effect of supplementation of Tulsi (Ocimum sanctum) and Neem (Azadirachta indica) leaf powder on diabetic symptoms, anthropometric parameters and blood pressure of non-insulin dependent male diabetics. Stud Ethno Med. 2009;3(1):5-9. https://doi.org/10.1080/09735070.2009.11886330 DOI: https://doi.org/10.1080/09735070.2009.11886330

Abilash S, Vijay Y, Deepthi T, Sri C, Vibha R, Swetha R, et al. Anti diabetic effect of ethanolic extract of leaves of Ocimum sanctum in alloxan induced diabetes in rats. Int J Basic Clin Pharmacol. 2013;2(5):613. https://doi.org/10.5455/2319-2003.ijbcp20131018 DOI: https://doi.org/10.5455/2319-2003.ijbcp20131018

Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel- Wahab YH. Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic β-cells. J Endocrinol. 2006;189(1):127-36. https://doi.org/10.1677/joe.1.06615 PMid:16614387 DOI: https://doi.org/10.1677/joe.1.06615

Widjaja SS, Rusdiana R. Extract ethanol of poguntano in alloxan induced diabetic rats. Bangladesh J Med Sci. 2018;17(2):251-4. https://doi.org/10.3329/bjms.v17i2.35879 DOI: https://doi.org/10.3329/bjms.v17i2.35879

Huq A, Haque K, Khan AK. Clinical efficacy and safety of holy basil-based anti-diabetic tea. J Sci Technol. 2018;8(1-2):1-9.

Governa P, Baini G, Borgonetti V, Cettolin G, Giachetti D, Magnano A, et al. Phytotherapy in the management of diabetes: A review. Molecules. 2018 4;23(1):105. https://doi.org/10.3390/molecules23010105 PMid:29300317 DOI: https://doi.org/10.3390/molecules23010105

Pattanayak P, Behera P, Das D, Panda S. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn Rev. 2010;4(7):95-105. https://doi.org/10.4103/0973-7847.65323 PMid:22228948 DOI: https://doi.org/10.4103/0973-7847.65323

Lala V, Goyal A, Bansal P, Minter DA. Liver function test. In: Stat Pearls. Treasure Island, FL: Stat Pearls Publishing; 2020.

Ramachandran S, Rajasekaran A, Manisenthilkumar K. Investigation of hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of Terminalia paniculata bark in diabetic rats. Asian Pac J Trop Biomed. 2012;2(4):262-8. https://doi.org/10.1016/s2221-1691(12)60020-3 PMid:23569911 DOI: https://doi.org/10.1016/S2221-1691(12)60020-3

Downloads

Published

2021-07-27

How to Cite

1.
Widjaja SS, Rusdiana R, Savira M, Amelia R. Antihyperglycemic, Endothelial protection and Toxicity study of Basil Leaves Extract on Diabetic Rats. Open Access Maced J Med Sci [Internet]. 2021 Jul. 27 [cited 2024 Nov. 21];9(A):589-94. Available from: https://oamjms.eu/index.php/mjms/article/view/6520