Antibacterial kinetics and phylogenetic analysis of Aloe vera plants

Authors

  • Paul Akinduti Department of Biological Sciences, Microbiology Unit, Covenant University, Ota, Ogun State, Nigeria https://orcid.org/0000-0003-0697-8176
  • Yemisi D. Obafemi Department of Biological Sciences, Microbiology Unit, Covenant University, Ota, Ogun State, Nigeria https://orcid.org/0000-0001-6919-792X
  • Patrick O. Isibor Department of Biological Sciences, Applied Biology and Biotechnology Unit, Covenant University, Ota, Ogun State, Nigeria https://orcid.org/0000-0002-0353-9453
  • Rapheal Ishola Department of Medical Microbiology and Parasitology, Olabisi Onabanjo University, Sagamu Campus, Ogun State, Nigeria
  • Frank E. Ahuekwe Department of Biological Sciences, Microbiology Unit, Covenant University, Ota, Ogun State, Nigeria https://orcid.org/0000-0003-1477-4050
  • O. A. Ayodele Department of Medical Microbiology, University College Hospital, Ibadan, Nigeria
  • O. S. Oduleye Department of Science Laboratory Technology, Microbiology Unit, D.S Adegbenro ICT Polytechnic, Itori, Ewekoro, Nigeria
  • Olubukola Oziegbe Department of Biological Sciences, Microbiology Unit, Covenant University, Ota, Ogun State, Nigeria https://orcid.org/0000-0001-8001-0919
  • O. M. Onagbesan Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria

DOI:

https://doi.org/10.3889/oamjms.2021.6526

Keywords:

Aloe vera, Sap, Resistant, Diversity, Antibacterial

Abstract

Uncontrolled use of antibiotics has resulted in the emergence of resistant bacteria. It has necessitated the evaluation of antibacterial activities and phylo-diversity of Aloe vera (also called Aloe barbadensis) plants as antimicrobial agent in Nigeria. Biotyped enteric bacilli of 251 strains obtained from fecal samples of patients with various gastro-intestinal complications are profiled for antibiogram. Resistant biotypes were assayed for susceptibility to Aloe vera latex and further evaluated for time-kill kinetics and phylo-diversity. More than 30% of enteric bacilli, including Citrobacter freundii, Escherichia coli and Proteus mirabilis were resistant to cotrimoxazole, ciprofloxacin, and tetracycline respectively at MIC >16 µg/ml (p=0.004). Aloe vera latex significantly inhibited 39.5% resistant enteric biotypes with a significant average reduction of the viable count at 1xMIC and 2xMIC to less than 3.0 Log10CFU/mL after 24 hours. Flavonoids, alkaloids, terpenoids and anthraquinine in anti-enteric sap significantly correlated and regressed with antibacterial activity (p<0.05), while two of the antimicrobial Aloe vera plants showed phylogenetic relatedness with other homologous. Anti-bacteria efficacy of some Nigerian Aloe vera latex could provide alternative therapy, while its phylo-diversity and genomic profiling would offer a promising avenue for identification and development of antimicrobial agents as drug candidates for natural antibiotics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Goud S, Raghavendra S, Shylaja M, Babu J. The detection and antimicrobial susceptibility profile of Shigella isolates in and around Hyderabad, Telangana. J Pharm Innov. 2018;7:84-8.

Akinduti PA, Olasehinde GI, Ejilude O, Taiwo OS, Obafemi YD. Fecal carriage and phylodiversity of community-acquired blaTEM Enteric bacilli in Southwest Nigeria. Infect. Drug Resist. 2018;11(24):25-33. http://doi.org/10.2147/IDR.S178243 PMid:30568469 DOI: https://doi.org/10.2147/IDR.S178243

Iliyasu MY, Uba A, Agbo EB. Phenotypic detection of multidrug resistant extended-spectrum beta-lactamase (ESBL) producing Escherichia coli from clinical samples. Afr J Cell Pathol. 2018;10(2):25-32. http://doi.org/10.5897/AJCPath2018.0004 DOI: https://doi.org/10.5897/AJCPath2018.0004

Ugwu MC, Shariff M, Nnajide CM, Beri K, Okezie UM, Iroha IR, et al. Phenotypic and molecular characterization of β-lactamases among enterobacterial uropathogens in Southeastern Nigeria. Can J Infect Dis Med Microbiol. 2020;2020:5843904. http://doi.org/10.1155/2020/5843904 PMid:32184910 DOI: https://doi.org/10.1155/2020/5843904

Romulo A, Zuhud EA, Rondevaldova J, Kokoska L. Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine. Pharm Biol. 2018;56(1):287-93. http://doi.org/10.1080/13880209.2018.1462834 PMid:29656672 DOI: https://doi.org/10.1080/13880209.2018.1462834

Andrea B, Dumitrița R, Florina C, Francisc D, Anastasia V, Socaci S, et al. Comparative analysis of some bioactive compounds in leaves of different Aloe species. BMC Chem. 2020;14(1):67. http://doi.org/10.1186/s13065-020-00720-3 PMid:33292458 DOI: https://doi.org/10.1186/s13065-020-00720-3

Musara C, Aladejana EB. Review of studies on Bulbine natalensis Baker (Asphodelaceae): Ethnobotanical uses, biological and chemical properties. J Appl Pharm Sci. 2020;10(9):150-5. http://doi.org/10.7324/JAPS.2020.10918 DOI: https://doi.org/10.7324/JAPS.2020.10918

Akinduti PA, Oluwadun A, Olugbuyiro JA, Osuagwu CS, Ejilude O, Onagbesan KO, et al. Antimicrobial activity and time kill kinetics of Nigerian Honeys on multi-resistant Enteric Bacilli. IOP Conf Ser Environ Earth Sci. 2018;210(1):012003. DOI: https://doi.org/10.1088/1755-1315/210/1/012003

Danish P, Ali Q, Hafeez MM, Malik A. Antifungal and antibacterial activity of Aloe vera plant extract. Biol Clin Sci Res J. 2020;3:1-14. DOI: https://doi.org/10.54112/bcsrj.v2020i1.4

Peska V, Garcia S. Origin, diversity, and evolution of telomere sequences in plants. Front Plant Sci 2020;11:117-26. DOI: https://doi.org/10.3389/fpls.2020.00117

Abid S, Kaliraj L, Arif MH, Hurh J, Ahn JC, Yang DC, et al. Molecular and morphological discrimination of Chrysanthemum indicum using allele-specific PCR and T-shaped trichome. Mol Biol Rep. 2020;47(10):7699-708. PMid:32974840 DOI: https://doi.org/10.1007/s11033-020-05844-2

Khan ZA, Siddiqui MF, Park S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics. 2019;9(2):49-66. http://doi.org/10.3390/diagnostics9020049 PMid:31058811 DOI: https://doi.org/10.3390/diagnostics9020049

Clinical and Laboratory Standard Institute. Twenty-first Informational Supplement, CLSI Document M100-S21, Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.

Nadir S, Adienge A, Muturi GM, Kinyua J, Ngaira J, Gicheru JM. Genetic diversity and population structure of three commercial indigenous Aloe species in selected ASALs of Kenya. J Plant Mol Breed. 2019;8(1):1-10. http://dx.doi.org/10.7243/2050-2389-8-1 DOI: https://doi.org/10.7243/2050-2389-8-1

Bala AG, Hassan MR, Tanko RJ, Amodu JT, Bature MS, Hassan AH, et al. Forage potentials of two cowpea (Vigna unguiculata L. Walp) varieties as influenced by varying irrigation frequencies and phosphorus application rates in Zaria. Niger J Anim Prod. 2020;47(1):269-77. DOI: https://doi.org/10.51791/njap.v47i1.242

Thielmann J, Muranyi P, Kazman P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus. Heliyon. 2019;5(6):e01860. https://doi.org/10.1016/j.heliyon.2019.e01860 DOI: https://doi.org/10.1016/j.heliyon.2019.e01860

Ajayi OF, Olasunkanmi OO, Agunbiade MO, Alayande KA, Aiyegoro, OA, Akinpelu DA. Study on antimicrobial and antioxidant potentials of Alchornea cordifolia (Linn.): An in vitro assessment. Trans R Soc S Afr. 2020;75(3):266-81. https://doi.org/10.1080/0035919X.2020.1830868 DOI: https://doi.org/10.1080/0035919X.2020.1830868

Oladele AC, Olumayowa AA, Temitope OS. Phytochemical and antimicrobial activity of ethnomedicinal leaf extract of selected plants in Nigeria. World J Adv Res Rev. 2020;7(1):253-62. http://doi.org/10.30574/wjarr.2020.7.1.0256 DOI: https://doi.org/10.30574/wjarr.2020.7.1.0256

Kutama RM, Adbulkadi RS, Kwalli SA, Chiroma G. Phytochemical compositions in some Nigerian medicinal plants and their pharmacological properties: A review. Int J Anesth Clin Med. 2018;6(1):15-25. DOI: https://doi.org/10.11648/j.ja.20180601.14

Achikanu CE, Ani ON. Nutritional and phytochemical content of Cissus populnea (Okoho) stem bark. Asian J Res Biochem. 2020;7(3):8-15. http://doi.org/10.9734/ajrb/2020/v7i330139 DOI: https://doi.org/10.9734/ajrb/2020/v7i330139

Dey P. The pharmaco-toxicological conundrum of oleander: Potential role of gut microbiome. Biomed Pharmacother. 2020;129(1):110422. http://doi.org/10.1016/j.biopha.2020.110422 Mid:32563990 DOI: https://doi.org/10.1016/j.biopha.2020.110422

Hapsari BW, Manikharda M, Setyaningsih W. Methodologies in the analysis of phenolic compounds in Roselle (Hibiscus sabdariffa L.): Composition, biological activity, and beneficial effects on human health. Horticulturae. 2021;7(2):35-76. https://doi.org/10.3390/horticulturae7020035 DOI: https://doi.org/10.3390/horticulturae7020035

Arulmozhi P, Vijayakumar S, Kumar T. Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms. Microb Pathog. 2018;123:219-26. http://doi.org/10.1016/j.micpath.2018.07.009 PMid:30009969 DOI: https://doi.org/10.1016/j.micpath.2018.07.009

Tesk A, Freitas F, Kemper RT, Vieira TB. Evaluation of antibacterial activity from different Aloe vera (L.) Burm. F. extracts against Staphylococcus aureus strains. Sci Electron Arch. 2020;13(9):74-9. http://doi.org/10.36560/13920201190 DOI: https://doi.org/10.36560/13920201190

Shinohara DR, Menegucci TC, Fedrigo NH, Migliorini LB, Carrara-Marroni FE, Dos Anjos MM, et al. Synergistic activity of polymyxin B combined with vancomycin against carbapenem-resistant and polymyxin-resistant Acinetobacter baumannii: First in vitro study. J Med Microbiol. 2019;68(3):309-15. PMid:30663954 DOI: https://doi.org/10.1099/jmm.0.000920

Flamm RK, Rhomberg PR, Lindley JM, Sweeney K, Ellis- Grosse EJ, Shortridge, D. Evaluation of the bactericidal activity of fosfomycin in combination with selected antimicrobial comparison agents tested against gram-negative bacterial strains by using time-kill curves. Antimicrob Agents Chemother. 2019;63(5):e02549-18. http://doi.org/10.1128/AAC.02549-18 Mid:30858207 DOI: https://doi.org/10.1128/AAC.02549-18

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quatities of fresh leaf tissue. Phytochem Bull. 1987;19:11-5.

Tiwari S, Tomar RS, Tripathi MK, Ahuja A. Modified protocol for plant genomic DNA isolation. Indian Res J Genet Biotech. 2017;9(4):478-85.

Khan NT. MEGA-core of phylogenetic analysis in molecular evolutionary genetics. J Evol Biol. 2017;5(2):1000183.

Abdelwahab R, Yasir M, Godfrey RE, Christie GS, Element SJ, Saville F, et al. Antimicrobial resistance and gene regulation in Enteroaggregative Escherichia coli from Egyptian children with diarrhoea: Similarities and differences. Virulence. 2021;12(1):57-74. http://doi.org/10.1080/21505594.2020.1859852 PMid:33372849 DOI: https://doi.org/10.1080/21505594.2020.1859852

Akinduti PA, Oluwadun A, Osiyemi J, Ejilude O, Isibor, PO. Multi-antibiotics resistant relatedness of bla-gene encoded enteric bacteria harbouring high molecular R-plasmids. IOP Conf Ser Environ Earth Sci. 2018;210(1):012002. DOI: https://doi.org/10.1088/1755-1315/210/1/012002

Jibril AH, Okeke IN, Dalsgaard A, Menéndez VG, Olsen JE. Genomic analysis of antimicrobial resistance and resistance plasmids in Salmonella serovars from poultry in Nigeria. Antibiotics. 2021;10(2):99. http://doi.org/10.3390/antibiotics10020099 PMid:33498344 DOI: https://doi.org/10.3390/antibiotics10020099

Akinduti PA, Aboderin BW, Oloyede RI, Joseph I, Ogiogwa, Motayo BO, Ejilude O. High-level multi-resistant and virulent Escherichia coli in Abeokuta, Nigeria. J Immunoassay Immunochem. 2016;37(2):119-29. http://doi.org/10.1080/15321819.2015.1063504 PMid:26263915 DOI: https://doi.org/10.1080/15321819.2015.1063504

Kolano B, McCann J, Oskędra M, Chrapek M, Rojek M, Nobis A, et al. Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium (Chenopodiaceae). Phytotaxa. 2019;392(3):163-85. DOI: https://doi.org/10.11646/phytotaxa.392.3.1

Awotedu OL, Ogunbamowo PO, Chukwudebe EP, Ariwoola OS. Medicinal based plants: A call to nature. World News Nat Sci. 2020;31:92-109.

Boucher FC, Quatela AS, Ellis AG, Verboom GA. Diversification rate vs. diversification density: Decoupled consequences of plant height for diversification of Alooideae in time and space. PLoS One. 2020;15(5):e0233597. http://doi.org/10.1371/journal.pone.0233597 PMid:32453786 DOI: https://doi.org/10.1371/journal.pone.0233597

Bajpai S. Biological importance of Aloe vera and its active constituents. In: Synthesis of Medicinal Agents from Plants. Amsterdam, Netherlands: Elsevier; 2018. p. 177-203. DOI: https://doi.org/10.1016/B978-0-08-102071-5.00008-8

Akinduti PA, Ejilude O, Olugbuyiro J, Adewale AG, Onagbesan O, Afolabi O. Geospatial investigation of nigerian honey and detection of anti-enteric biomarker. Evid Based Complement Alternat Med. 2020;2020:9817673. http://doi.org/10.1155/2020/9817673 PMid:32419836 DOI: https://doi.org/10.1155/2020/9817673

Birhan M, Tessema T, Kenubih A, Yayeh M. In vitro antimicrobial evaluation of aqueus methanol extracts from Calpurina aurea (Fabaceae) leaves. Asian J Pharm Res. 2018;8(4):33-43.

Gorsi FI, Kausar T, Murtaza MA. Evaluation of antibacterial and antioxidant activity of Aloe vera (Aloe barbadensis Miller) gel powder using different solvents. Pure Appl Biol. 2019;8(2):1265- 70. http://doi.org/10.19045/bspab.2019.80068 DOI: https://doi.org/10.19045/bspab.2019.80068

Li Y, Jiang JG. Health functions and structure-activity relationships of natural anthraquinones from plants. Food Funct. 2018;9(12):6063-80. http://doi.org/10.1039/c8fo01569d PMid:30484455 DOI: https://doi.org/10.1039/C8FO01569D

Sadeek AM, Abdallah EM. Phytochemical compounds as antibacterial agents a mini review. Saudi Pharm J. 2019;7(4):1-6.

Zhang Y, Zhao C, Wang Q, Wang X, Chen H, Li H, et al. Evaluation of the in vitro activity of new polymyxin B analogue SPR206 against clinical MDR, colistin-resistant and tigecycline-resistant Gram-negative bacilli. J Antimicrob Chemother. 2020;75(9):2609-15. http://doi.org/10.1093/jac/dkaa217 PMid:32591806 DOI: https://doi.org/10.1093/jac/dkaa217

Akuru UB, Amadi BA. Phytochemicals and antioxidant properties of some selected medicinal plants. J Pharmacogn Phytochem. 2018;7(5):283-5.

Iikasha AM, Bock R, Mumbengegw DR. Phytochemical screening and antibacterial activity of selected medicinal plants against laboratory diarrheal bacteria strains. J Pharmacogn Phytochem. 2017;6(5):233-4.

Vetal DS, Pardeshi AB. Larvicidal potential of Argemone mexicana L. Plant extracts against Spodoptera litura fab. J Pharm Innov. 2019;8(6):698-702.

Abarca LF, Klinkhamer PG, Choi YH. Plant latex, from ecological interests to bioactive chemical resources. Planta Med. 2019;85(11/12):856-68. http://doi.org/10.1055/a-0923-8215 PMid:31137048 DOI: https://doi.org/10.1055/a-0923-8215

Sokefun OO, Eleyowo, OO, Avungbeto, MO. In vitro antioxidant and antibacterial activity of Bridelia atroviridis (Arasado). J Altern Complement Med Res. 2017;2(4):4040254. http://doi.org/10.1155/2017/4040254 PMid:28491106 DOI: https://doi.org/10.9734/JOCAMR/2017/29305

Akkachairin B, Rodphon W, Reamtong O, Mungthin M, Tummatorn J, Thongsornkleeb C, et al. Synthesis of neocryptolepines and carbocycle-fused quinolines and evaluation of their anticancer and antiplasmodial activities. Bioorg Chem. 2020;98(1):103732. http://doi.org/10.1016/j.bioorg.2020.103732 PMid:32171989 DOI: https://doi.org/10.1016/j.bioorg.2020.103732

Abirami S, Jabesta J, Renitta RE, Anand DA, Samrot AV. Antimicrobial activity of flower extracts against wound pathogens and fungi. Curr Res Green Sustain Chem. 2021;4:100076. https://doi.org/10.1016/j.crgsc.2021.100076 DOI: https://doi.org/10.1016/j.crgsc.2021.100076

Jaiswal S, Antala TJ, Mandavia MK, Chopra M, Jasrotia RS, Tomar RS, et al. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci Rep. 2018;8(1):3382. http://doi.org/10.1038/s41598-018-21560-1 PMid:29467369 DOI: https://doi.org/10.1038/s41598-018-21560-1

Rana S, Kanwar K. Assessment of genetic diversity in Aloe vera L. among different provinces of HP. J Med Plant Res. 2017;5(3):348-54.

Ahl LI, Grace OM, Pedersen HL, Willats WG, Jørgensen B, Rønsted N. Analyses of Aloe polysaccharides using carbohydrate microarray profiling. J AOAC Int. 2018;101(6):1720-8. http://doi.org/10.5740/jaoacint.18-0120 PMid:29895348 DOI: https://doi.org/10.5740/jaoacint.18-0120

Fu PP. Pyrrolizidine alkaloids: Metabolic activation pathways leading to liver tumor initiation. Chem Res Toxicol. 2017;30(1):81-93. http://doi.org/10.1021/acs.chemrestox.6b00297 PMid:28092947 DOI: https://doi.org/10.1021/acs.chemrestox.6b00297

Banik S, Sharangi AB. Phytochemistry, health benefits and toxicological profile of Aloe. J Pharmacogn Phytochem. 2019;8(3):4499-506.

Khatun MM, Tanny T, Yesmin S, Salimullah MD, Alam I. Evaluation of genetic fidelity of in vitro-propagated Aloe vera plants using DNA-based markers. Sci Asia. 2018;44:87-91. DOI: https://doi.org/10.2306/scienceasia1513-1874.2018.44.087

Wei L. Selection on synonymous mutations revealed by 1135 genomes of Arabidopsis thaliana. Evol Bioinform. 2020;16(1):1-16. DOI: https://doi.org/10.1177/1176934320916794

Wang Z, Huang C, Lv H, Zhang M, Li X. In silico analysis and high-risk pathogenic phenotype predictions of non-synonymous single nucleotide polymorphisms in human Crystallin beta A4 gene associated with congenital cataract. PLoS One. 2020;15(1):e0227859. http://doi.org/10.1371/journal.pone.0227859 PMid:31935276 DOI: https://doi.org/10.1371/journal.pone.0227859

Downloads

Published

2021-11-13

How to Cite

1.
Akinduti P, Obafemi YD, Isibor PO, Ishola R, Ahuekwe FE, Ayodele OA, Oduleye OS, Oziegbe O, Onagbesan OM. Antibacterial kinetics and phylogenetic analysis of Aloe vera plants. Open Access Maced J Med Sci [Internet]. 2021 Nov. 13 [cited 2024 Apr. 26];9(A):946-54. Available from: https://oamjms.eu/index.php/mjms/article/view/6526