The Effect of Intravenously and Intra-arterially Delivered Human Umbilical Cord Blood Mononuclear Cell on Cortical Neurogenesis of Post-Ischemic Stroke Rat Brain
DOI:
https://doi.org/10.3889/oamjms.2021.6555Keywords:
Cord blood mononuclear cells, Ischemic stroke, NeuN, NeurogenesisAbstract
BACKGROUND: Stroke is the second most cause of death in the world. There are several treatments but they often end up with disabilities. Recently, cell therapy has become a new hope as an alternative treatment as it could improve the patients neurological deficits and daily living activities. Cord blood mononuclear cells (CB-MNCs) are one of the cell therapies for post-ischemic neurogenesis by intravenous or intra-arterial administration; however, it is not clear which one is better.
AIM: This study aims to compare the effects of intra-arterial and intravenous administration of human CB-MNC on cortical neurogenesis of rat brain after ischemic stroke.
METHODS: Twenty-four rats were divided into four groups, that is, control, middle cerebral artery obstruction (MCAO) without treatment, MCAO with intra-arterial CB-MNC injection (MCAO-IA), and MCAO with intravenous CB-MNC injection (MCAO-IV). Two weeks after injection, all rats were sacrificed, the brain was harvested, histologically process and stained with hematoxylin eosin (HE) to determine cellular and tissue morphology changes, and immunohistochemical staining, anti-NeuN antibody to determine the number of cortical neurons. The HE showed that MCAO rat brain had gliosis and shrunken cells.
RESULTS: The results showed that MCAO-IA and MCAO-IV had fewer areas of gliosis and shrunken cells when compared to the MCAO group. The number of neurons also showed an increase. However, there was no difference between the MCAO-IA and MCAO-IV groups. It was concluded both of them could improve neurogenesis.
CONCLUSION: CB-MNC administration can be an alternative for stroke ischemic therapy because it is proven to increase neurogenesis and reduce gliosis areas. However, there was no difference in neurogenesis in the brain tissue of mice injected with CB-MNC intravenously or intra-arterially.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: A global response is needed. Bull World Health Organ. 2016;94(9):634. https://doi.org/10.2471/blt.16.181636 DOI: https://doi.org/10.2471/BLT.16.181636
Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, et al. Global, Regional, and Country-Spesific Lifetime Risks of Stoke, 1990 and 2016. N Engl J Med. 2018;379(25):2429-37. PMid:30575491 DOI: https://doi.org/10.1056/NEJMoa1804492
Truelsen T, Begg S, Mathers C. The Global Burden of Cerebrovascular Disease. Geneva: World Health Organization; 2000.
Tini K, Dewa I, Samatra PG, Wiryadana KA, Supadmanaba IG. Clinical profile of patients with cerebrovascular disease at Stroke Unit, Sanglah General Hospital, Denpasar, Bali. Bali Med J (Bali Med J) 2020;9:129-36. https://doi.org/10.15562/bmj.v9i1.1665 DOI: https://doi.org/10.15562/bmj.v9i1.1665
Font MA, Arboix A, Krupinski J. Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr Cardiol Rev. 2010;6:238-44. https://doi.org/10.2174/157340310791658802 DOI: https://doi.org/10.2174/157340310791658802
Friedrich AG, Martins MP, Arau MD, Klamt C, Vedolin L, Garicochea B, et al. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant. 2012;21(Suppl 1):13-22. https://doi.org/10.3727/096368912x612512 PMid:22507676 DOI: https://doi.org/10.3727/096368911X612512
Riyadina W, Rahajeng E. Determinan penyakit stroke. J Kesehatan Masyarakat Nasional. 2012;7(7):324-30. DOI: https://doi.org/10.21109/kesmas.v7i7.31
Kumar A, Prasad M, Jali VP, Pandit AK, Misra S, Kumar P, et al. Bone marrow mononuclear cell therapy in ischaemic stroke: A systematic review. Acta Neurol Scand. 2017;135(5):496-506. https://doi.org/10.1111/ane.12666 PMid:27558274 DOI: https://doi.org/10.1111/ane.12666
Yang B, Xi X, Aronowski J, Savitz SI. Ischemic stroke may activate bone marrow mononuclear cells to enhance recovery after stroke. Stem Cells Dev. 2012;21(18):3332-40. https://doi.org/10.1089/scd.2012.0037 PMid:22731389 DOI: https://doi.org/10.1089/scd.2012.0037
Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35(10):2390-5. https://doi.org/10.1161/01.str.0000141681.06735.9b DOI: https://doi.org/10.1161/01.STR.0000141681.06735.9b
Bhasin A, Srivastava MV, Mohanty S, Bhatia R, Kumaran SS. Stem cell therapy: A clinical trial of stroke. Clin Neurol Neurosurg. 2013;115(7):1003-8. https://doi.org/10.1016/j.clineuro.2012.10.015 PMid:23183251 DOI: https://doi.org/10.1016/j.clineuro.2012.10.015
Guzman R, Choi R, Gera A, De Los Angeles A, Andres RH, Steinberg GK. Intravascular cell replacement therapy for stroke. Neurosurg Focus. 2008;24(3-4):3e4. https://doi.org/10.3171/foc/2008/24/3-4/e14 PMid:18341412 DOI: https://doi.org/10.3171/FOC/2008/24/3-4/E14
Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682-9. https://doi.org/10.1161/hs1101.098367 PMid:11692034 DOI: https://doi.org/10.1161/hs1101.098367
Misra V, Ritchie MM, Stone LL, Low WC, Janardhan V. Stem cell therapy in ischemic stroke: Role of IV and intra-arterial therapy. Neurology. 2012;79(13 Suppl 1):S207-12. https://doi.org/10.1212/wnl.0b013e31826959d2 PMid:23008400 DOI: https://doi.org/10.1212/WNL.0b013e31826959d2
Savitz SI. Developing cellular therapies for stroke. Stroke. 2015;46(7):2026-31. PMid:26045599 DOI: https://doi.org/10.1161/STROKEAHA.115.007149
Ramli Y, Alwahdy AS, Kurniawan M, Juliandi B, Wuyung PE, Susanto YD. Intravenous versus intraarterial transplantation of human umbilical cord blood mononuclear cells for brain ischemia in rats. HAYATI J Biosci. 2017;24(4):187-94. https://doi.org/10.1016/j.hjb.2017.11.002 DOI: https://doi.org/10.1016/j.hjb.2017.11.002
Saha A, Petel S, Li X, Scotland P, Schwartzman J, Filiano AJ, et al. Human umbilical cord blood monocytes, but not adult blood monocytes, rescue brain cells from hypoxic-ichemic injury: mechanistic and therapeutic implicaton. PLoS One. 2019;14(9):e0218906. https://doi.org/10.1371/journal.pone.0218906 PMid:31483780 DOI: https://doi.org/10.1371/journal.pone.0218906
Lima RR, Santana LN, Fernandes RM, Nascimento EM, Oliveira AC, Fernandes LM, et al. Neurodegeneration and glial response after acute striatal stroke: Histological basis for neuroprotective studies. Oxid Med Cell Longev. 2016;2016:3173564. https://doi.org/10.1155/2016/3173564 PMid:28090244 DOI: https://doi.org/10.1155/2016/3173564
Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsien D, et al. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant. 2012;21(4):723-37. https://doi.org/10.3727/096368911x586783 PMid:21929866 DOI: https://doi.org/10.3727/096368911X586783
Laterza C, Uoshima T, Wilhelmsson U, Stokowska A, Ge R, Pekny M, et al. 2018 Attenuation of reactive gliosis in stroke-injured mouse brain does not affect neurogenesis from grafted human iPSC-derived neural progenitor. PLoS One. 2018;13(2):e0192118. https://doi.org/10.1371/journal.pone.0192118 PMid:29401502 DOI: https://doi.org/10.1371/journal.pone.0192118
Lin R, Cai J, Nathan C, Wei X, Schleidt S, Rosenwasser R, et al. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol Dis. 2014;74:229-39. https://doi.org/10.1016/j.nbd.2014.11.016 PMid:25484283 DOI: https://doi.org/10.1016/j.nbd.2014.11.016
Galieva LR, Mukhamedshina YO, Akhmetzyanova ER, Gilazieva ZE, Arkhipova SS, et al. Influence of genetically modified human umbilical cord blood mononuclear cells on the expression of Schwann cell molecular determinants in spinal cord injury. Hindawi Stem Cells International. 2018;2018:4695275. https://doi.org/10.1155/2018/4695275 DOI: https://doi.org/10.1155/2018/4695275
Rodrigues LP, Iglesias D, Nicola FC, Steffens D, Valentim L, Witczak A, et al. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats. Braz J Med Biol Res. 2012;45(1):49-57. https://doi.org/10.1590/s0100-879x2011007500162 PMid:22183246 DOI: https://doi.org/10.1590/S0100-879X2011007500162
Crowley MG, Tajiri N. Exogenous stem cells pioneer a biobridge to the advantage of host brain cells following stroke: New insights for clinical applications. Brain Circ. 2017;3(3):130-4. https://doi.org/10.4103/bc.bc_17_17 PMid:30276314 DOI: https://doi.org/10.4103/bc.bc_17_17
Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Investig. 2004;114(3):330-8. https://doi.org/10.1172/jci200420622 PMid:15286799 DOI: https://doi.org/10.1172/JCI200420622
Pimentel-Coelho PM, Rosado-de-Castro PH, Barbosa LM, Mendez-Otero R. Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 2012;71(4):464-73. https://doi.org/10.1038/pr.2011.59 PMid:22430382 DOI: https://doi.org/10.1038/pr.2011.59
Balami JS, Fricker RA, Chen R. Stem cell therapy for ischaemic stroke: Translation from preclinical studies to clinical treatment. CNS Neurol Disord Drug Targets. 2013;12(2):209-19. https://doi.org/10.2174/1871527311312020007 PMid:23394533 DOI: https://doi.org/10.2174/1871527311312020007
Downloads
Published
How to Cite
License
Copyright (c) 2021 Sastia Winda Astuti, Isabella Kurnia Liem, Yetty Ramli (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0