Effect of Thymoquinone on Th1 and Th2 Balance in Rats Infected with Mycobacterium tuberculosis

Authors

  • Ery Olivianto Doctoral Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Agustina Tri Endharti Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia https://orcid.org/0000-0002-2062-5740
  • H.M.S. Chandra Kusuma Department of Child Health, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Sanarto Santoso Department of Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Kusworini Handono Department of Clinical pathology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.6560

Keywords:

Thymoquinone, Tuberculosis, Th1-Th2

Abstract

Thymoquinone is an active compound in Nigella sativa which has potential immunomodulatory effect. Mycobacterium tuberculosis could alter the Th1 and Th2 balance by stimulating phagocyte IL-1β production, and subsequent Th2 differentiation. We aim to evaluate the effect of thymoquinone (TQ) in restore the Th1 and Th2 balance in Mycobacterium tuberculosis infection. Four groups of rats were infected with virulent Mycobacterium tuberculosis strain H37Rv. Thymoquinone at different doses was given to three groups, and one group left without treatment. Additional one group was either infected or treated with TQ. We measure IL-1β, IL-4 and IFN-γ levels using ELISA 14 days after TQ treatment. We found there were increased IL-1β, IL-4 and IFN-γ level after Mycobacterium tuberculosis infection, but we observe no significant effect of TQ treatment to Th1 and Th2 balance.  We conclude that TQ could not restore Th1 and Th2 balance in rats infected with Mycobacterium tuberculosis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Worl Health Organization. Global Tuberculosis Report 2019. Geneva: Worl Health Organization; 2019.

Dwivedi VP, Bhattacharya D, Chatterjee S, Prasad DV, Chattopadhyay D, van Kaer L, et al. Mycobacterium tuberculosis directs T helper 2 cell differentiation by inducing interleukin-1beta production in dendritic cells. J Biol Chem. 2012;287(40):33656-63. https://doi.org/10.1074/jbc.m112.375154 PMid:22810226 DOI: https://doi.org/10.1074/jbc.M112.375154

Pooran A, Davids M, Nel A, Shoko A, Blackburn J, Dheda K. IL-4 subverts mycobacterial containment in Mycobacterium tuberculosis-infected human macrophages. Eur Respir J. 2019;54(2):1802242. https://doi.org/10.1183/13993003.02242-2018 PMid:31097521 DOI: https://doi.org/10.1183/13993003.02242-2018

Boskabady MH, Keyhanmanesh R, Khameneh S, Doostdar Y, Khakzad MR. Potential immunomodulation effect of the extract of Nigella sativa on ovalbumin sensitized guinea pigs. J Zhejiang Univ Sci B. 2011;12(3):201-9. https://doi.org/10.1631/jzus. b1000163 PMid:21370505 DOI: https://doi.org/10.1631/jzus.B1000163

Keyhanmanesh R, Pejman L, Omrani H, Mirzamohammadi Z, Shahbazfar AA. The effect of single dose of thymoquinone, the main constituents of Nigella sativa, in guinea pig model of asthma. Bioimpacts. 2014;4(2):75-81. https://doi.org/10.9775/kvfd.2015.14135 PMid:25035850 DOI: https://doi.org/10.9775/kvfd.2015.14135

Keyhanmanesh R, Boskabady MH, Khamneh S, Doostar Y. Effect of thymoquinone on the lung pathology and cytokine levels of ovalbumin-sensitized guinea pigs. Pharmacol Rep. 2010;62(5):910-6. https://doi.org/10.1016/s1734-1140(10)70351-0 PMid:21098874 DOI: https://doi.org/10.1016/S1734-1140(10)70351-0

Darakhshan S, Pour AB, Colagar AH, Sisakhtnezha S. Thymoquinone and its therapeutic potentials. Pharmacol Res. 2015;95-96:138-58. https://doi.org/10.1016/j.phrs.2015.03.011 PMid:25829334 DOI: https://doi.org/10.1016/j.phrs.2015.03.011

Dera AA, Ahmad I, Rajagopalan P, Al-Shahrani M, Saif A, Alshahrani MY, et al. Synergistic efficacies of thymoquinone and standard antibiotics against multi-drug resistant isolates. Saudi Med J. 2021;42(2):196-204. https://doi.org/10.15537/smj.2021.2.25706 PMid:33563739 DOI: https://doi.org/10.15537/smj.2021.2.25706

Dey D, Ray R, Hazra B. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytother Res. 2014;28(7):1014-21. https://doi.org/10.1002/ptr.5090 PMid:24318724 DOI: https://doi.org/10.1002/ptr.5090

Randhawa MA. In vitro antituberculous activity of thymoquinone, an active principle of Nigella sativa. J Ayub Med Coll Abbottabad. 2011;23(2):78-81. PMid:24800349

Mahmud HA, Seo H, Kim S, Islam MI, Nam KW, Cho HD, et al. Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production. BMC Complement Altern Med. 2017;17(1):279. https://doi.org/10.1186/s12906-017-1786-0 PMid:28545436 DOI: https://doi.org/10.1186/s12906-017-1786-0

Gholamnezhad Z, Rafatpanah H, Sadeghnia HR, Boskabady MH. Immunomodulatory and cytotoxic effects of Nigella sativa and thymoquinone on rat splenocytes. Food Chem Toxicol. 2015;86:72-80. https://doi.org/10.1016/j.fct.2015.08.028 PMid:26342766 DOI: https://doi.org/10.1016/j.fct.2015.08.028

Martinez J, Verbist K, Wang R, Green DR. The relationship between metabolism and the autophagy machinery during the innate immune response. Cell Metab. 2013;17(6):895-900. https://doi.org/10.1016/j.cmet.2013.05.012 PMid:23747248 DOI: https://doi.org/10.1016/j.cmet.2013.05.012

O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346-55. https://doi.org/10.1038/nature11862 PMid:23325217 DOI: https://doi.org/10.1038/nature11862

Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol. 2016;38(4):425-48. https://doi.org/10.1007/s00281-016-0560-6 PMid:27116944 DOI: https://doi.org/10.1007/s00281-016-0560-6

Ashenafi S, Aderaye G, Bekele A, Zewdie M, Aseffa G, Hoang AT, et al. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol. 2014;151(2):84-99. https://doi.org/10.1016/j.clim.2014.01.010 PMid:24584041 DOI: https://doi.org/10.1016/j.clim.2014.01.010

Xuan NT, Shumilina E, Qadri SM, Götz F, Lang F. Effect of thymoquinone on mouse dendritic cells. Cell Physiol Biochem. 2010;25(2-3):307-14. https://doi.org/10.1159/000276563 PMid:20110691 DOI: https://doi.org/10.1159/000276563

Krishnan N, Robertson BD, Thwaites G. Pathways of IL-1β secretion by macrophages infected with clinical Mycobacterium tuberculosis strains. Tuberculosis (Edinb). 2013;93(5):538-47. https://doi.org/10.1016/j.tube.2013.05.002 PMid:23849220 DOI: https://doi.org/10.1016/j.tube.2013.05.002

Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958-69. https://doi.org/10.1038/nri2448 PMid:19029990 DOI: https://doi.org/10.1038/nri2448

Cavalcanti YV, Brelaz MC, Neves JK, Ferraz JC, Pereira VR. Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm Med. 2012;2012:745483. https://doi.org/10.1155/2012/745483 PMid:23251798 DOI: https://doi.org/10.1155/2012/745483

Miliani M, Nouar M, Paris O, Lefranc G, Mennechet F, Aribi M. Thymoquinone potently enhances the activities of classically activated macrophages pulsed with necrotic jurkat cell lysates and the production of antitumor Th1-/M1-related cytokines. J Interferon Cytokine Res. 2018;38(12):539-51. https://doi.org/10.1089/jir.2018.0010 PMid:30422744 DOI: https://doi.org/10.1089/jir.2018.0010

Downloads

Published

2021-08-02

How to Cite

1.
Olivianto E, Endharti AT, Kusuma HC, Santoso S, Handono K. Effect of Thymoquinone on Th1 and Th2 Balance in Rats Infected with Mycobacterium tuberculosis. Open Access Maced J Med Sci [Internet]. 2021 Aug. 2 [cited 2024 Nov. 21];9(A):688-92. Available from: https://oamjms.eu/index.php/mjms/article/view/6560