The Use of Eosinophil Count in Predicting the Need of Coronavirus Disease 2019 Patient for Treatment in Intensive Care Unit
DOI:
https://doi.org/10.3889/oamjms.2021.6562Keywords:
Biomarker, Coronavirus disease 2019, Eosinophil, Intensive care unitAbstract
BACKGROUND: Identification of coronavirus disease 2019 (COVID-19) patients who have the potential to become critical cases at an early stage and providing aggressive therapy can reduce the mortality rate.
AIM: This study aims to determine the diagnostic value and differences of eosinophil counts in patients with COVID-19 who require treatment in intensive care unit (ICU) and non-ICU.
METHOD: The prospective study was conducted on 382 patients with confirmed COVID-19 who were hospitalized from May to September 2020. Samples were obtained through consecutive sampling techniques. Mann–Whitney analysis was used to determine the difference of eosinophil counts in COVID-19 patients who require treatment in ICU and non-ICU. Receiver operating curve analysis was used to determine the diagnostic value of eosinophil count to predict the need of COVID-19 patients for treatment in ICU.
RESULTS: There is a significant difference in the absolute and percentage eosinophil count in COVID-19 patients who need treatment in ICU and non-ICU. The area under the curve of absolute and percentage eosinophil count to predict the need of COVID-19 patients for treatment in ICU is 0.659 and 0.738, respectively. The best cutoff value, sensitivity and specificity of absolute and percentage eosinophil count is <0.025 × 103 μL and <0.25%; 77.7% and 78.3%; and 50.0% and 57.1%, respectively.
CONCLUSIONS: The eosinophil count can be used as a biomarker to predict the need of COVID-19 patients for treatment in ICU.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
World Health Organization. WHO Coronavirus Disease 2019 (COVID-19) Dashboard; 2021. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. [Last accessed on 2021 May 03].
Bhattacharya S, Basu P, Poddar S. Changing epidemiology of SARS-CoV in the context of COVID-19 pandemic. J Prev Med Hyg. 2020;61(2):E130-6. https://doi.org/10.2139/ssrn.3722801 PMid:32802995 DOI: https://doi.org/10.2139/ssrn.3722801
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. https://doi.org/10.1001/jama.2020.1585 PMid:32031570 DOI: https://doi.org/10.1001/jama.2020.1585
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/s0140-6736(20)30183-5 PMid:31986264 DOI: https://doi.org/10.1016/S0140-6736(20)30183-5
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507-13. https://doi.org/10.1016/s0140-6736(20)30211-7 PMid:32007143 DOI: https://doi.org/10.1016/S0140-6736(20)30211-7
Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81. https://doi.org/10.1016/s2213-2600(20)30079-5 PMid:32105632 DOI: https://doi.org/10.1016/S2213-2600(20)30079-5
Li L, Gong S, Yan J. Covid-19 in China: Ten critical issues for intensive care medicine. Crit Care. 2020;24(124):1-3 https://doi.org/10.1186/s13054-020-02848-z PMid:32234064 DOI: https://doi.org/10.1186/s13054-020-02848-z
Vergano M, Bertolini G, Giannini A, Gristina GR, Livigni S, Mistraletti G, et al. Clinical ethics recommendations for the allocation of intensive care treatments in exceptional, resource-limited circumstances: The Italian perspective during the COVID-19 epidemic. Crit Care. 2020;24(165):1-3. https://doi.org/10.1186/s13054-020-02891-w PMid:32321562 DOI: https://doi.org/10.1186/s13054-020-02891-w
Henry BM, de Oliveira MH, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chem Lab Med. 2020;58(7):1021-8. https://doi.org/10.1515/cclm-2020-0369 PMid:32286245 DOI: https://doi.org/10.1515/cclm-2020-0369
Tan C, Huang Y, Shi F, Tan K, Ma Q, Chen Y, et al. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J Med Virol. 2020;92(7):856-62. https://doi.org/10.1002/jmv.25871 PMid:32281668 DOI: https://doi.org/10.1002/jmv.25871
Hou H, Zhang B, Huang H, Luo Y, Wu S, Tang G, et al. Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19. Clin Exp Immunol. 2020;201(1):76-84. https://doi.org/10.1111/cei.13450 PMid:32365221 DOI: https://doi.org/10.1111/cei.13450
Sabogal Piñeros YS, Bal SM, Dijkhuis A, Majoor CJ, Dierdorp BS, Dekker T, et al. Eosinophils capture viruses, a capacity that is defective in asthma. Allergy. 2019;74(10):1898-909. https://doi.org/10.1111/all.13802 PMid:30934128 DOI: https://doi.org/10.1111/all.13802
Percopo CM, Dyer KD, Ochkur SI, Luo JL, Fischer ER, Lee JJ, et al. Activated mouse eosinophils protect against lethal respiratory virus infection. Blood. 2014;123(5):743-52. https://doi.org/10.1182/blood-2013-05-502443 PMid:24297871 DOI: https://doi.org/10.1182/blood-2013-05-502443
Samarasinghe AE, Melo RC, Duan S, LeMessurier KS, Liedmann S, Surman SL, et al. Eosinophils promote antiviral immunity in mice infected with influenza A virus. The J Immunol. 2017;198(8):3214-26. https://doi.org/10.4049/jimmunol.1600787 PMid:28283567 DOI: https://doi.org/10.4049/jimmunol.1600787
Yu P, Xu Y, Deng W, Bao L, Huang L, Xu Y, et al. Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus. PLoS One. 2017;12(2):e0172093. https://doi.org/10.1371/journal.pone.0172093 PMid:28234937 DOI: https://doi.org/10.1371/journal.pone.0172093
Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730-41. https://doi.org/10.1111/all.14238 PMid:32077115 DOI: https://doi.org/10.1111/all.14238
Yun H, Sun Z, Wu J, Tang A, Hu M, Xiang Z. Laboratory data analysis of novel coronavirus (COVID-19) screening in 2510 patients. Clin Chim Acta. 2020;507:94-7. https://doi.org/10.1016/j.cca.2020.04.018 PMid:32315614 DOI: https://doi.org/10.1016/j.cca.2020.04.018
Xie G, Ding F, Han L, Yin D, Lu H, Zhang M. The role of peripheral blood eosinophil counts in COVID-19 patients. Allergy. 2021;76(2):471-82. https://doi.org/10.1111/all.14465 PMid:32562554 DOI: https://doi.org/10.1111/all.14465
World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) when COVID-19 Disease is Suspected: Interim Guidance. Geneva: World Health Organization; 2020. https://doi.org/10.15557/pimr.2020.0003 DOI: https://doi.org/10.15557/PiMR.2020.0003
Yan B, Yang J, Xie Y, Tang X. Relationship between blood eosinophil levels and COVID-19 mortality. World Allergy Organ J. 2021;14(3):100521. https://doi.org/10.1016/j.waojou.2021.100521 PMid:33589865 DOI: https://doi.org/10.1016/j.waojou.2021.100521
Mu T, Yi Z, Wang M, Wang J, Zhang C, Chen H, et al. Expression of eosinophil in peripheral blood of patients with COVID-19 and its clinical significance. J Clin Lab Anal. 2021;35(1):e23620. https://doi.org/10.1002/jcla.23620 PMid:33118666 DOI: https://doi.org/10.1002/jcla.23620
Domachowske JB, Rosenberg HF. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol. 2001;70(5):691-8. PMid:11698487
Yasui F, Kai C, Kitabatake M, Inoue S, Yoneda M, Yokochi S, et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J Immunol. 2008;181(9):6337-48. https://doi.org/10.4049/jimmunol.181.9.6337 PMid:18941225 DOI: https://doi.org/10.4049/jimmunol.181.9.6337
Jiang S, Liu T, Hu Y, Li R, Di X, Jin X, et al. Efficacy and safety of glucocorticoids in the treatment of severe community-acquired pneumonia: A meta-analysis. Medicine. 2019;98(26):e16239. https://doi.org/10.1097/md.0000000000016239 PMID:31261585 DOI: https://doi.org/10.1097/MD.0000000000016239
Fulkerson PC, Rothenberg ME. Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov. 2013;12(2):117-29. https://doi.org/10.1038/nrd3838 PMid:23334207 DOI: https://doi.org/10.1038/nrd3838
Cottin V. Eosinophilic lung diseases. Clin Chest Med. 2016;37(3):535-56. https://doi.org/10.1016/j.ccm.2016.04.015 PMid:27514599 DOI: https://doi.org/10.1016/j.ccm.2016.04.015
Huang J, Zhang Z, Liu S, Gong C, Chen L, Ai G, et al. Absolute eosinophil count predicts intensive care unit transfer among elderly COVID-19 patients from general isolation wards. Front Med. 2020;7:585222. https://doi.org/10.3389/fmed.2020.585222 PMid:33251234 DOI: https://doi.org/10.3389/fmed.2020.585222
Shaaban H, Daniel S, Sison R, Slim J, Perez G. Eosinopenia: is it a good marker of sepsis in comparison to procalcitonin and C-reactive protein levels for patients admitted to a critical care unit in an urban hospital? J Crit Care. 2010;25(4):570-5. https://doi.org/10.1016/j.jcrc.2010.03.002 PMid:20435431 DOI: https://doi.org/10.1016/j.jcrc.2010.03.002
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Ngakan Ketut Wira Suastika, Ketut Suega (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0