The Vertical Soft Tissue Thickness and Subcrestal Implant Placement as Factors for Peri-implant Crestal bone Stability
DOI:
https://doi.org/10.3889/oamjms.2021.6605Keywords:
Vertical soft tissue thickness, Subcrestal implant placement, Bone lossAbstract
Aim
The aim of this prospective study was to determine the influence of vertical soft tissue thickness on bone level changes in platform-switched implants placed eqicrestally or subcrestally and restored with screw-retained or cement-retained restorations.
Methods
Platform-switched bone-level implants were placed in a single stage manner in the posterior mandibular region. Implant sites were divided into thick (control) and thin (test) vertical soft tissue groups. The implants in the control group were placed equicrestally. The implant sites from the control group were randomly allocated to receive equicrestally or subcrestally placed implants. Bone remodeling/loss was radiographically measured at baseline, three months postoperatively and six months after delivery of final prosthetic restoration.
Results
The mean crestal bone loss values three months postoperatively and six months post prosthetic restoration were higher in sites with thin versus sites with thick gingiva. In implant sites with thin gingiva, subcrestally placed implants presented less bone loss than eqicrestally placed implants.
Conclusion
Platform switched implants are prone to more bone loss when they are placed in sites with thin soft tissue, regardless of the type of final restoration (screw-retained or cement-retained). Subcrestal placement of platform-switched implants can prevent crestal bone loss in sites with vertical soft tissue thickness < 3 mm.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Albrektsson T, Buser D, Sennerby L. Crestal bone loss and oral implants. Clin Implant Dent Relat Res. 2012;14:783-91. https://doi.org/10.1111/cid.12013 DOI: https://doi.org/10.1111/cid.12013
Albrektsson T, Zarb G, Worthington P, Eriksson AR. The longterm efficacy of currently used dental implants: A review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1:11-25. PMid:3527955
Albrektsson T, Dahlin C, Jemt T, Sennerby L, Turri A, Wennerberg A. Is marginal bone loss around oral implants the result of a provoked foreign body reaction? Clin Implant Dent Relat Res. 2014;16(2):155-165. https://doi.org/10.1111/cid.12142 PMid:24004092 DOI: https://doi.org/10.1111/cid.12142
Galindo-Moreno P, Leon-Cano A, Ortega-Oller I, Monje A, O’Valle F, Catena A. Marginal bone loss as success criterion in implant dentistry: Beyond 2 mm. Clin Oral Implants Res. 2015;26(4):e28-34. https://doi.org/10.1111/clr.12324 PMid:24383987 DOI: https://doi.org/10.1111/clr.12324
Misch CE, Dietsh-Misch F, Hoar J, Beck G, Hazen R, Misch CM. A bone quality-based implant system: First year of prosthetic loading. J Oral Implantol. 1999;25(3):185-97. https://doi.org/10.1563/1548-1336(1999)025<0185:abqisf>2.3.co;2 PMid:10551149 DOI: https://doi.org/10.1563/1548-1336(1999)025<0185:ABQISF>2.3.CO;2
Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. J Periodontol 2001;72(10):1372-83. https://doi.org/10.1902/jop.2001.72.10.1372 PMid:11699479 DOI: https://doi.org/10.1902/jop.2001.72.10.1372
Wiskott HW, Belser UC. Lack of integration of smooth titanium surfaces: A working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res. 1999;10(6):429-44. https://doi.org/10.1034/j.1600-0501.1999.100601.x PMid:10740452 DOI: https://doi.org/10.1034/j.1600-0501.1999.100601.x
Barboza EP, Caula AL, Carvalho WR. Crestal bone loss around submerged and exposed unloaded dental implants: A radiographic and microbiological descriptive study. Implant Dent. 2002;11(2):162-9. https://doi.org/10.1097/00008505-200204000-00018 PMid:12078599 DOI: https://doi.org/10.1097/00008505-200204000-00018
Berglundh T, Lindhe J. Dimension of the periimplant mucosa. Biological width revisited. J Clin Periodontol. 1996;23(10):971-3. https://doi.org/10.1111/j.1600-051x.1996.tb00520.x PMid:8915028 DOI: https://doi.org/10.1111/j.1600-051X.1996.tb00520.x
Lazzara RJ, Porter SS. Platform switching: A new concept in implant dentistry for controlling postrestor-ative crestal bone levels. Int J Periodontics Restorative Dent. 2006;26(1):9-17. PMid:16515092
Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: A retrospective histologic evaluation in monkeys. J Periodontol. 2003;74(3):346-52. https://doi.org/10.1902/jop.2003.74.3.346 PMid:12710754 DOI: https://doi.org/10.1902/jop.2003.74.3.346
Nevins M, Nevins ML, Camelo M, Boyesen JL, Kim DM. Human histologic evidence of a connective tissue attachment to a dental implant. Int J Periodontics Restorative Dent. 2008;28(2):111-21. https://doi.org/10.11607/prd.1848 PMid:18546807 DOI: https://doi.org/10.11607/prd.1848
Hammerle CH, Bragger U, Burgin W, Lang NP. The effect of subcrestal placement of the polished surface of ITI implants on marginal soft and hard tissues. Clin Oral Implants Res. 1996;7(2):111-9. https://doi.org/10.1034/j.1600-0501.1996.070204.x PMid:9002829 DOI: https://doi.org/10.1034/j.1600-0501.1996.070204.x
Ericsson I, Persson LG, Berglundh T, Marinello CP, Lindhe J, Klinge B. Different types of inflammatory reactions in periimplant soft tissues. J Clin Periodontol 1995;22(3):255-61. https://doi.org/10.1111/j.1600-051x.1995.tb00143.x PMid:7790533 DOI: https://doi.org/10.1111/j.1600-051X.1995.tb00143.x
Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J Periodontol. 2000;71(9):1412-24. https://doi.org/10.1902/jop.2000.71.9.1412 PMid:11022770 DOI: https://doi.org/10.1902/jop.2000.71.9.1412
Broggini N, McManus LM, Hermann JS, Medina R, Schenk RK, Buser D, et al. Peri-implant inflammation defined by the implantabutment interface. J Dent Res. 2006;85(5):473-8. https://doi.org/10.1177/154405910608500515 PMid:16632764 DOI: https://doi.org/10.1177/154405910608500515
Canullo L, Fedele GR, Iannello G, Jepsen S. Platform switching and marginal bone-level alterations: The results of a randomizedcontrolled trial. Clin Oral Implants Res. 2010;21(1):115-21. https://doi.org/10.1111/j.1600-0501.2009.01867.x PMid:20070752 DOI: https://doi.org/10.1111/j.1600-0501.2009.01867.x
Canullo L, Iannello G, Penarocha M, Garcia B. Impact of implant diameter on bone level changes around platform switched implants: Preliminary results of 18 months follow-up a prospective randomized match- paired controlled trial. Clin Oral Implants Res. 2012;23(10):1142-6. https://doi.org/10.1111/j.1600-0501.2011.02297.x PMid:22111758 DOI: https://doi.org/10.1111/j.1600-0501.2011.02297.x
Canullo L, Iannello G, Gotz W. The influence of individual bone patterns on peri-implant bone loss: Preliminary report from a 3-year randomized clinical and histologic trial in patients treated with implants restored with matching-diameter abutments or the platform-switching concept. Int J Oral Maxillofac Implants. 2011;26(3):618-30. https://doi.org/10.11607/jomi.6954 PMid:21691610 DOI: https://doi.org/10.11607/jomi.6954
Strietzel FP, Neumann K, Hertel M. Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis. Clin Oral Implants Res. 2015;26(3):342-58. https://doi.org/10.1111/clr.12339 PMid:24438506 DOI: https://doi.org/10.1111/clr.12339
Atieh MA, Ibrahim HM, Atieh AH. Platform switching for marginal bone preservation around dental implants: A systematic review and meta-analysis. J Periodontol. 2010;81(10):1350-66. https://doi.org/10.1902/jop.2010.100232 PMid:20575657 DOI: https://doi.org/10.1902/jop.2010.100232
Linkevicius T, Puisys A, Svediene O, Linkevicius R, Linkeviciene L. Radiological comparison of laser-microtextured and platformswitched implants in thin mucosal biotype. Clin Oral Implants Res. 2015;26(5):599-605. https://doi.org/10.1111/clr.12544 PMid:25558894 DOI: https://doi.org/10.1111/clr.12544
Linkevicius T, Apse P, Grybauskas S, Puisys A. The influence of soft tissue thickness on crestal bone changes around implants: A 1-year prospective con- trolled clinical trial. Int J Oral Maxillofac Implants. 2009;24(4):712-9. https://doi.org/10.1111/clr.12301 PMid:19885413
Linkevicius T, Apse P, Grybauskas S, Puisys A. Reaction of crestal bone around implants depending on mucosal tissue thickness. A 1-year prospective clinical study. Stomatologija. 2009;11(3):83-91. https://doi.org/10.1111/clr.12301 PMid:19996674
Puisys A, Linkevicius T. The influence of mucosal tissue thickening on crestal bone stability around bone-level implants. A prospective controlled clinical trial. Clin Oral Implants Res. 2015;26(2):123-9. https://doi.org/10.1111/clr.12301 PMid:24313250 DOI: https://doi.org/10.1111/clr.12301
Linkevicius T, Puisys A, Steigmann M, Vindasiute E, Linkeviciene L. Influence of vertical soft tissue thickness on crestal bone changes around implants with platform switching: A comparative clinical study. Clin Implant Dent Relat Res. 2015;17(6):1228-36. https://doi.org/10.1111/cid.12222 PMid:24673875 DOI: https://doi.org/10.1111/cid.12222
Linkevicius T, Puisys A, Linkeviciene L, Peciuliene V, Schlee M. Crestal bone stability around implants with horizontally matching connection after soft tissue thickening: A prospective clinical trial. Clin Implant Dent Relat Res. 2015;17(3):497-508. https://doi.org/10.1111/cid.12155 PMid:24103157 DOI: https://doi.org/10.1111/cid.12155
Linkevicius T, Puisys A, Linkevicius R, Alkimavicius J, Gineviciute E, Linkeviciene L. The influence of submerged healing abutment or subcrestal implant placement on soft tissue thickness and crestal bone stability. A 2-year randomized clinical trial. Clin Implant Dent Relat Res. 2020;22:1-10. https://doi.org/10.1111/cid.12903 DOI: https://doi.org/10.1111/cid.12903
Galindo-Moreno P, Leon-Cano A, Ortega-Oller I, Monje A, Suárez F, ÓValle F, et al. Prosthetic abutment height is a key factor in peri- implant marginal bone loss. J Dent Res. 2014;93(Suppl 7):80S-5. https://doi.org/10.1177/0022034513519800 PMid:24621670 DOI: https://doi.org/10.1177/0022034513519800
Vervaeke S, Dierens M, Besseler J, De Bruyn H. The influence of initial soft tissue thickness on peri-implant bone remodeling. Clin Implant Dent Relat Res. 2014;16(2):238-47. https://doi.org/10.1111/j.1708-8208.2012.00474.x PMid:22758656 DOI: https://doi.org/10.1111/j.1708-8208.2012.00474.x
Linkevicius T, Apse P, Grybauskas S, Puisys A. Influence of thin mucosal tissues on crestal bone stability around implants with platform switching: A 1-year pilot study. J Oral Maxillofac Surg. 2010;68(9):2272-7. https://doi.org/10.1016/j.joms.2009.08.018 PMid:20605308 DOI: https://doi.org/10.1016/j.joms.2009.08.018
Vandeweghe S, De Bruyn H. A within-implant comparison to evaluate the concept of platform switching: A randomised controlled trial. Eur J Oral Implantol. 2012;5(3):253-62. PMid:23000709
Galindo-Moreno P, Leon-Cano A, Monje A, Ortega-Oller I, O’Valle F, Catena A. Abutment height influences the effect of platform switching on peri-implant marginal bone loss. Clin Oral Implants Res. 2016;27(2):167-73. https://doi.org/10.1111/clr.12554 PMid:25678247 DOI: https://doi.org/10.1111/clr.12554
Wiesner G, Esposito M, Worthington H, Schlee M. Connective tissue grafts for thickening peri-implant tissues at implant placement. One-year results from an explanatory split-mouth randomised controlled clinical trial. Eur J Oral Implantol. 2010;3(1):27-35. PMid:20467596
Dibart S, Warbington M, Su MF, Skobe Z. In vitro evaluation of the implant-abutment bacterial seal: The locking taper system. Int J Oral Maxillofac Implants. 2005;20(5):732-7. PMid:16274147
Blanco J, Pico A, Caneiro L, Novoa L, Batalla P, Martin-Lancharro P. Effect of abutment height on interproximal implant bone level in the early healing: A randomized clinical trial. Clin Oral Implants Res. 2018;29(1):108-17. https://doi.org/10.1111/clr.13108 PMid:29222809 DOI: https://doi.org/10.1111/clr.13108
Downloads
Published
How to Cite
License
Copyright (c) 2021 Darko Veljanovski, Aneta Atanasovska-Stojanovska, Aleksandra Pivkova-Veljanovska, Eitan Mijiritsky, Curd Bollen (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0