Effect of Glucose-Insulin-Potassium Infusion on Hemodynamics in Patients with Septic Shock

Authors

  • Hassan Effat Department of Critical care medicine, Faculty of Medicine, Cairo University Kasr Alainy, Cairo, Giza, Egypt
  • Ramy Khaled Department of Critical care medicine, Faculty of Medicine, Cairo University Kasr Alainy, Cairo, Giza, Egypt
  • Ahmed Battah Department of Critical care medicine, Faculty of Medicine, Cairo University Kasr Alainy, Cairo, Giza, Egypt
  • Mohamed Shehata Department of Critical care medicine, Faculty of Medicine, Cairo University Kasr Alainy, Cairo, Giza, Egypt
  • Waleed Farouk Department of Critical care medicine, Faculty of Medicine, Cairo University Kasr Alainy, Cairo, Giza, Egypt

DOI:

https://doi.org/10.3889/oamjms.2021.6641

Keywords:

Septic shock, Glucose-insulin-potassium, Hemodynamics, Sepsis induced cardiomyopathy

Abstract

BACKGROUND: Glucose-insulin-potassium (GIK) demonstrates a cardioprotective effect by providing metabolic support and anti-inflammatory action, and may be useful in septic myocardial depression.

AIM: The aim of this study was to assess role of GIK infusion in improving hemodynamics in patients with septic shock in addition to its role in myocardial protection and preventing occurrence of sepsis-induced myocardial dysfunction and sepsis-induced arrhythmias.

METHODS: This study was conducted on 75 patients admitted to the Critical Care Department in Cairo University Hospital with the diagnosis of septic shock during the period from January 2019 to December 2019. Patients were divided into two groups; first group was managed according to the last guidelines of surviving sepsis campaign and was subjected to the GIK infusion protocol while second group was managed following the last guidelines of surviving sepsis campaign only without adding GIK infusion.

RESULTS: Patients in the GIK group showed better lactate clearance (50% vs. 46.7%) and less time needed for successful weaning of vasopressors than the control group (3.57±1.16 vs. 3.6±1.45 days) thought not reaching statistical significance. There was no statistically significant difference between both groups regarding development of septic-induced cardiomyopathy (16.7% in the control group vs. 13.3% in the GIK group); however, patients with hypodynamic septic shock showed better improvement in hemodynamic profile in the GIK group. Sepsis-induced arrhythmias occurred more in patients of the control group than in patients of the GIK group with no statistically significant difference between both groups (33.3% vs. 20%, p = 0.243). Few side effects were developed as a result of using GIK infusion protocol.

CONCLUSIONS: GIK may help in improving hemodynamics and weaning of vasopressors in patients with refractory septic shock and those with septic induced cardiomyopathy. The use of GIK was well tolerated with minimal adverse reactions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801-10. http://doi.org/10.1001/jama.2016.0287 PMid:26903338 DOI: https://doi.org/10.1001/jama.2016.0287

Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):762-74. http://doi.org/10.1001/jama.2016.0288 PMid:26903335 DOI: https://doi.org/10.1001/jama.2016.0288

Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22(7):707-10. http://doi.org/10.1007/BF01709751 PMid:8844239 DOI: https://doi.org/10.1007/BF01709751

Sato R, Kuriyama A, Takada T, Nasu M, Luthe SK. Prevalence and risk factors of sepsis-induced cardiomyopathy: A retrospective cohort study. Medicine. 2016;95(39):e5031. http://doi.org/10.1097/MD.0000000000005031 PMid:27684877 DOI: https://doi.org/10.1097/MD.0000000000005031

Zaky A, Deem S, Bendjelid K, Treggiari MM. Characterization of cardiac dysfunction in sepsis: An ongoing challenge. Shock. 2014;41(1):12-24. http://doi.org/10.1097/SHK.0000000000000065 PMid:24351526 DOI: https://doi.org/10.1097/SHK.0000000000000065

Jozwiak M, Persichini R, Monnet X, Teboul JL, editors. Management of Myocardial Dysfunction in Severe Sepsis. In: Seminars in Respiratory and Critical Care Medicine. New York: Thieme Medical Publishers; 2011. DOI: https://doi.org/10.1055/s-0031-1275533

Boissier F, Razazi K, Seemann A, Bedet A, Thille AW, de Prost N, et al. Left ventricular systolic dysfunction during septic shock: The role of loading conditions. Intens Care Med. 2017;43(5):633-42. http://doi.org/10.1007/s00134-017-4698-z PMid:28204860 DOI: https://doi.org/10.1007/s00134-017-4698-z

Vallabhajosyula S, Pruthi S, Shah S, Wiley B, Mankad S, Jentzer J. Basic and advanced echocardiographic evaluation of myocardial dysfunction in sepsis and septic shock. Anaesth Intens Care. 2018;46(1):13-24. http://doi.org/10.1177/0310057X1804600104 PMid:29361252 DOI: https://doi.org/10.1177/0310057X1804600104

Hamdulay SS, Al-Khafaji A, Montgomery H. Glucose-insulin and potassium infusions in septic shock. Chest. 2006;129(3):800-4. http://doi.org/10.1378/chest.129.3.800 PMid:16537885 DOI: https://doi.org/10.1378/chest.129.3.800

Pulido JN, Afessa B, Masaki M, Yuasa T, Gillespie S, Herasevich V, et al., editors. Clinical spectrum, frequency, and significance of myocardial dysfunction in severe sepsis and septic shock. Mayo Clin Proc. 2012;87(7):620-8. http://doi.org/10.1016/j.mayocp.2012.01.018 PMid:22683055

Chan Y. Biostatistics 102: Quantitative data-parametric and non-parametric tests. Blood Press. 2003;140(24.08):79. http://doi.org/10.1016/j.mayocp.2012.01.018 PMid:22683055 DOI: https://doi.org/10.1016/j.mayocp.2012.01.018

Chan Y. Biostatistics 103: Qualitative data-tests of independence. Singapore Med J. 2003;44(10):498-503. PMid:15024452

Jeong HS, Lee TH, Bang CH, Kim JH, Hong SJ. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stressinduced cardiomyopathy in sepsis or septic shock: A comparative retrospective study. Medicine. 2018;97(13):e0263. PMid:29595686 DOI: https://doi.org/10.1097/MD.0000000000010263

Lu NF, Jiang L, Zhu B, Yang DG, Zheng RQ, Shao J, et al. Elevated plasma histone H4 levels are an important risk factor in the development of septic cardiomyopathy. Balkan Med J. 2020;37(2):72-8. http://doi.org/10.4274/balkanmedj.galenos.2019.2019.8.40 PMid:31674172 DOI: https://doi.org/10.4274/balkanmedj.galenos.2019.2019.8.40

Shahreyar M, Fahhoum R, Akinseye O, Bhandari S, Dang G, Khouzam RN. Severe sepsis and cardiac arrhythmias. Ann Transl Med. 2018;6(1):6. http://doi.org/10.21037/atm.2017.12.26 PMid:29404352 DOI: https://doi.org/10.21037/atm.2017.12.26

Klouwenberg PM, Frencken JF, Kuipers S, Ong DS, Peelen LM, van Vught LA, et al. Incidence, predictors, and outcomes of new-onset atrial fibrillation in critically ill patients with sepsis. A cohort study. Am J Respir Crit Care Med. 2017;195(2):205-11. http://doi.org/10.1164/rccm.201603-0618OC PMid:27467907 DOI: https://doi.org/10.1164/rccm.201603-0618OC

de Grooth HJ, Postema J, Loer SA, Parienti JJ, Oudemans-van Straaten HM, Girbes AR. Unexplained mortality differences between septic shock trials: A systematic analysis of population characteristics and control-group mortality rates. Intens Care Med. 2018;44(3):311-22. http://doi.org/10.1007/s00134-018-5134-8 PMid:29546535 DOI: https://doi.org/10.1007/s00134-018-5134-8

Vincent JL, Jones G, David S, Olariu E, Cadwell KK. Frequency and mortality of septic shock in Europe and North America: A systematic review and meta-analysis. Crit Care. 2019;23(1):196. http://doi.org/10.1186/s13054-019-2478-6 PMid:31151462 DOI: https://doi.org/10.1186/s13054-019-2478-6

Slob EM, Shulman R, Singer M. Experience using high-dose glucose-insulin-potassium (GIK) in critically ill patients. J Crit Care. 2017;41:72-7. http://doi.org/10.1016/j.jcrc.2017.04.039 PMid:28500918 DOI: https://doi.org/10.1016/j.jcrc.2017.04.039

Kim WY, Baek MS, Kim YS, Seo J, Huh JW, Lim CM, et al. Glucose-insulin-potassium correlates with hemodynamic improvement in patients with septic myocardial dysfunction. J Thorac Dis. 2016;8(12):3648-57. http://doi.org/10.21037/jtd.2016.12.10 PMid:28149560 DOI: https://doi.org/10.21037/jtd.2016.12.10

Thomas G, Rojas MC, Epstein SK, Balk EM, Liangos O, Jaber BL. Insulin therapy and acute kidney injury in critically ill patients a systematic review. Nephrol Dial Transplant. 2007;22(10):2849-55. http://doi.org/10.1093/ndt/gfm401 PMid:17604310 DOI: https://doi.org/10.1093/ndt/gfm401

Schetz M, Vanhorebeek I, Wouters PJ, Wilmer A, Van den Berghe G. Tight blood glucose control is renoprotective in critically ill patients. J Am Soc Nephrol. 2008;19(3):571-8. http://doi.org/10.1681/ASN.2006101091 PMid:18235100 DOI: https://doi.org/10.1681/ASN.2006101091

Puskarich MA, Runyon MS, Trzeciak S, Kline JA, Jones AE. Effect of glucose insulin potassium infusion on mortality in critical care settings: A systematic review and metaanalysis. J Clin Pharmacol. 2009;49(7):758-67. http://doi.org/10.1177/0091270009334375 PMid:19417124 DOI: https://doi.org/10.1177/0091270009334375

Bassi E, Park M, Azevedo LC. Therapeutic strategies for high-dose vasopressor-dependent shock. Critical care research and practice. 2013;2013:654708. http://doi.org/10.1155/2013/654708 PMid:24151551 DOI: https://doi.org/10.1155/2013/654708

Downloads

Published

2021-11-23

How to Cite

1.
Effat H, Khaled R, Battah A, Shehata M, Farouk W. Effect of Glucose-Insulin-Potassium Infusion on Hemodynamics in Patients with Septic Shock. Open Access Maced J Med Sci [Internet]. 2021 Nov. 23 [cited 2024 Apr. 23];9(B):1517-24. Available from: https://oamjms.eu/index.php/mjms/article/view/6641