Development of Propolis (Apis trigona)-loaded Nanoemulgel for Improved Skin Penetration of Caffeic Acid: The Effect of Variation of Oleic Acid Concentration
DOI:
https://doi.org/10.3889/oamjms.2021.6672Keywords:
Propolis, Nanoemulgel, Caffeic acid, Oleic acid, PenetrationAbstract
BACKGROUND: Propolis contains caffeic acid compounds, which are proven to have pharmacological effects as an anti-inflammatory. However, its effectiveness is hampered by the poor solubility of caffeic acid. Here, we report developing the nanoemulgel approach containing propolis extract as an active ingredient and oleic acid as a permeation enhancer for transdermal delivery of caffeic acid.
AIM: This study aims to determine the effect of oleic acid concentration on increasing caffeic acid permeation in the skin and obtain a nanoemulgel formula with desired physical characteristics and stability.
MATERIALS AND METHODS: Propolis was macerated with 70% ethanol; the total phenolic content was measured by ultraviolet–visible spectrophotometer, and the levels of caffeic acid in the extracts and nanoemulgel preparations were finally determined using ultra-fast liquid chromatography. Formulas were made using various concentrations of oleic acid, namely, 1.25%w/w (Formula F1); 2.5%w/w (Formula F2); 5%w/w (Formula F3), respectively; and 1.25%w/w without propolis extract (Formula F4) as a comparison.
RESULTS: The results obtained from analysis of variance statistical exhibited that the difference in oleic acid concentrations in four formulas significantly affected (p < 0.05) particle size, polydispersity index, spreadability, adhesion, freeze-thaw, permeation, and retention test. However, there was no significant difference (p > 0.05) on pH and viscosity before and after 4 weeks of storage and zeta potential test. The highest amount of permeation and retention was found in F3 and F2, respectively, and all formulas tended to follow zero-order drug release kinetics. Furthermore, the results showed that the number of percent’s permeated in a row was 3.74% (F1); 5.58% (F2); 11.67% (F3), and F2 was the formula with the most optimal retention amount with a percentage of 43.13% at 24 h.
CONCLUSION: This study shows a promising delivery system for increasing the effectiveness of natural lipophilic compounds to treat inflammation in the skin.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Silva-Carvalho R, Baltazar F, Almeida-Aguiar C. Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evid Based Complement Altern Med. 2015;2015:206439. https://doi.org/10.1155/2015/206439 PMid:26106433 DOI: https://doi.org/10.1155/2015/206439
Tiveron AP, Rosalen PL, Franchin M, Lacerda RC, Bueno-Silva B, Benso B, et al. Chemical characterization and antioxidant, antimicrobial, and anti-inflammatory activities of South Brazilian organic propolis. PLoS One. 2016;11(11):e0165588. https://doi.org/10.1371/journal.pone.0165588 PMid:27802316 DOI: https://doi.org/10.1371/journal.pone.0165588
Bittencourt ML, Ribeiro PR, Franco RL, Hilhorst HW, de Castro RD, Fernandez LG. Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis: Use of correlation and multivariate analyses to identify potential bioactive compounds. Food Res Int. 2015;76(Pt 3):449-57. https://doi.org/10.1016/j.foodres.2015.07.008 PMid:28455025 DOI: https://doi.org/10.1016/j.foodres.2015.07.008
Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev. 2017;2017:1259510. https://doi.org/10.1155/2017/1259510 PMid:28814983 DOI: https://doi.org/10.1155/2017/1259510
Santana HF, Barbosa AA, Ferreira SO, Mantovani HC. Bactericidal activity of ethanolic extracts of propolis against Staphylococcus aureus isolated from mastitic cows. World J Microbiol Biotechnol. 2012;28(2):485-91. https://doi.org/10.1007/s11274-011-0839-7 PMid:22806843 DOI: https://doi.org/10.1007/s11274-011-0839-7
Rufatto LC, Luchtenberg P, Garcia C, Thomassigny C, Bouttier S, Henriques JA, et al. Brazilian red propolis: Chemical composition and antibacterial activity determined using bioguided fractionation. Microbiol Res. 2018;214:74-82. https://doi.org/10.1016/j.micres.2018.05.003 PMid:30031483 DOI: https://doi.org/10.1016/j.micres.2018.05.003
Wagh VD. Propolis: A wonder bees product and its pharmacological potentials. Adv Pharmacol Sci. 2013;2013:308249. https://doi.org/10.1155/2013/308249 PMid:24382957 DOI: https://doi.org/10.1155/2013/308249
Šuran J, Cepanec I, Mašek T, Radi B. Propolis extract and its bioactive compounds from traditional to modern extraction technologies. Tradit Mod Extra Technol. 2021;26(10):2930. PMid:34069165 DOI: https://doi.org/10.3390/molecules26102930
Da Cunha FM, Duma D, Assreuy J, Buzzi FC, Niero R, Campos MM, et al. Caffeic acid derivatives: In vitro and in vivo anti-inflammatory properties. Free Radic Res. 2004;38(11):1241-53. https://doi.org/10.1080/10715760400016139 PMid:15621702 DOI: https://doi.org/10.1080/10715760400016139
Žilius M, Ramanauskiene K, Briedis V. Release of propolis phenolic acids from semisolid formulations and their penetration into the human skin in vitro. Evid Based Complement Altern Med. 2013;2013:958717. https://doi.org/10.1155/2013/958717 DOI: https://doi.org/10.1155/2013/958717
Butnariu MV, Giuchici CV. The use of some nanoemulsions based on aqueous propolis and lycopene extract in the skin’s protective mechanisms against UVA radiation. J Nanobiotechnol. 2011;9:3. https://doi.org/10.1186/1477-3155-9-3 DOI: https://doi.org/10.1186/1477-3155-9-3
Fathi M, Mirlohi M, Varshosaz J, Madani G. Novel caffeic acid nanocarrier: Production, characterization, and release modeling. Nanomaterials. 2013;2013:434632. https://doi.org/10.1155/2013/434632 DOI: https://doi.org/10.1155/2013/434632
Seo YS, Cha S, Cho S, Yoon H, Kang Y, Park Y. Caffeic acid: Potential applications in nanotechnology as a green reducing agent for sustainable synthesis of gold nanoparticles. NPC Natural Product Commun. 2015;10(4):627-30. https://doi.org/10.1177/1934578X1501000424 PMid:25973494 DOI: https://doi.org/10.1177/1934578X1501000424
Lin Q, Huang H, Chen L, Shi G. Synthesis of caffeic acid coated silver nanoparticles for the treatment of osteoarthritis. Biomedical Research. 2017;28(3):1276–9.
Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2011;16:354-60. https://doi.org/10.1016/j. drudis.2010.02.009 PMid:20206289 DOI: https://doi.org/10.1016/j.drudis.2010.02.009
Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol. 2011;2:626-39. https://doi.org/10.4236/jbnb.2011.225075 DOI: https://doi.org/10.4236/jbnb.2011.225075
Eid AM, El-Enshasy HA, Aziz R, Elmarzugi NA. Preparation, characterization and anti-inflammatory activity of Swietenia macrophylla nanoemulgel. J Nanomed Nanotechnol. 2014;5:2. https://doi.org/10.4172/2157-7439.1000190 DOI: https://doi.org/10.4172/2157-7439.1000190
Sutradhar KB, Amin L. Nanoemulsions: Increasing possibilities in drug delivery. Eur J Nanomed. 2013;5:97-110. https://doi.org/10.1515/ejnm-2013-0001 DOI: https://doi.org/10.1515/ejnm-2013-0001
Chellapa P, Mohamed AT, Keleb EI, Elmahgoubi A, Eid AM, Issa YS, et al. Nanoemulsion and nanoemulgel as a topical formulation. IOSR J Pharm. 2015;5(10):43-7.
Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci. 2017;106(7):1736-51. https://doi.org/10.1016/j.xphs.2017.03.042 PMid:28412398 DOI: https://doi.org/10.1016/j.xphs.2017.03.042
Prajapati B. ‘‘Nanoemulgel” innovative approach for topical gel based formulation. Res Rev Healthc Open Access J. 2018;1(2):18-23. https://doi.org/10.32474/rrhoaj.2018.01.000107 DOI: https://doi.org/10.32474/RRHOAJ.2018.01.000107
Devarajan V, Ravichandran V. Nanoemulsions: As modified drug delivery tool. Pharm Glob. 2011;2:1-6.
Rahayu N, Mita SR. Efek penggunaan tunggal dan kombinasi asam oleat sebagai penetrasi pada sediaan transdermal. Farmaka. 2014;14:82-92.
Hallan SS, Sguizzato M, Drechsler M, Mariani P, Montesi L, Cortesi R, et al. The potential of caffeic acid lipid nanoparticulate systems for skin application: In vitro assays to assess delivery and antioxidant effect. Nanomaterials. 2021;11(1):171. https://doi.org/10.3390/nano11010171 PMid:33445433 DOI: https://doi.org/10.3390/nano11010171
Baibhav J, Gurpreet S, Rana A, Seema S, Emulgel VS. A comprehensive review on the recent advances in topical drug delivery. Int Res J Pharm. 2011;2(11):66-70.
Khairunnisa K, Mardawati E, Putri SH. Characteristics of phytochemicals and antioxidant activity of propolis extract bees Trigona Sp. J Ind Pertan. 2020;2:124-9.
Sartini S, Djide MN, Amir MN, Permana AD. Phenolic-rich green tea extract increases the antibacterial activity of amoxicillin against Staphylococcus aureus by in vitro and ex vivo studies. J Pharm Pharmcogn Res. 2020;8(6):491-500.
Spagnol CM, Isaac VL, Corrêa MA, Salgado HR. Validation of HPLC-UV assay of caffeic acid in emulsions. J Chromatogr Sci. 2016;54(3):305-11. https://doi.org/10.1093/chromsci/bmv142 PMid:26499121 DOI: https://doi.org/10.1093/chromsci/bmv142
Rebiai A. Determination of caffeic acid and gallic acid in Algerian bee pollen by an HPLC method. PCBS J. 2014. https://doi.org/10.13140/2.1.5049.9208
Gokhale JP, Mahajan HS, Surana SS. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed Pharmacother. 2019;112:108622. https://doi.org/10.1016/j.biopha.2019.108622 PMid:30797146 DOI: https://doi.org/10.1016/j.biopha.2019.108622
Alam MS, Algahtani MS, Ahmad J, Kohli K, Shafiq-Un-Nabi S, Warsi MH, et al. Formulation design and evaluation of aceclofenac nanogel for topical application. Ther Deliv. 2020;11(12):767-78. https://doi.org/10.4155/tde-2020-0076 PMid:33225842 DOI: https://doi.org/10.4155/tde-2020-0076
Mulia K, Ramadhan RMA, Krisanti EA. Formulation and characterization of nanoemulgel mangosteen extract in virgin coconut oil for topical formulation. MATEC Web Conf. 2018;156:01013. https://doi.org/10.1051/matecconf/201815601013 DOI: https://doi.org/10.1051/matecconf/201815601013
Soliman WE, Shehata TM, Mohamed ME, Younis NS, Elsewedy HS. Enhancement of curcumin anti-inflammatory effect via formulation into myrrh oil-based nanoemulgel. Polymers (Basel). 2021;13:577. https://doi.org/10.3390/polym13040577 PMid:33672981 DOI: https://doi.org/10.3390/polym13040577
Andonova VY, Peneva PT, Apostolova EG, Dimcheva TD, Peychev ZL, Kassarova MI. Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels. Trop J Pharm Res. 2017;16:1455-63. https://doi.org/10.4314/tjpr.v16i7.1 DOI: https://doi.org/10.4314/tjpr.v16i7.1
Lala RR, Awari NG. Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions. Appl Nanosci. 2014;4:143-51. https://doi.org/10.1007/s13204-012-0177-6 DOI: https://doi.org/10.1007/s13204-012-0177-6
Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulgel for improved topical delivery of retinyl palmitate: Formulation design and stability evaluation. Nanomaterials. 2020;10:848. https://doi.org/10.3390/nano10050848 PMid:32353979 DOI: https://doi.org/10.3390/nano10050848
Kumar S, Prasad M, Rao R. Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: Formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation. Mater Sci Eng C. 2021;119:111605. https://doi.org/10.1016/j.msec.2020.111605 PMid:33321649 DOI: https://doi.org/10.1016/j.msec.2020.111605
Kaur R, Ajitha M. Formulation of transdermal nanoemulsion gel drug delivery system of lovastatin and its in vivo characterization in glucocorticoid induced osteoporosis rat model. J Drug Deliv Sci Technol. 2019;52:968-78. https://doi.org/10.1016/j.jddst.2019.06.008 DOI: https://doi.org/10.1016/j.jddst.2019.06.008
Barradas TN, Senna JP, Cardoso SA, Nicoli S, Padula C, Santi P, et al. Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. Eur J Pharm Biopharm. 2017;116:38-50. https://doi.org/10.1016/j.ejpb.2016.11.018 PMid:27867112 DOI: https://doi.org/10.1016/j.ejpb.2016.11.018
Singh A, Bali A. Formulation and characterization of transdermal patches for controlled delivery of duloxetine hydrochloride. J Anal Sci Technol. 2016;7:25. https://doi.org/10.1186/s40543-016-0105-6 DOI: https://doi.org/10.1186/s40543-016-0105-6
Raj RA. Formulation evaluation and in vitro permeation studies of transdermal nifedipine from matrix type patches. Int J Pharm Pharm Sci. 2014;6:185-8.
Attama AA, Reichl S, Christel CM. Diclofenac sodium delivery to the eye: In vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm. 2008;355(1-2):307-13. https://doi.org/10.1016/j.ijpharm.2007.12.007 PMid:18242022 DOI: https://doi.org/10.1016/j.ijpharm.2007.12.007
Permana AD, Utami RN, Courtenay AJ, Manggau MA, Donnelly RF, Rahman L. Phytosomal nanocarriers as platforms for improved delivery of natural antioxidant and photoprotective compounds in propolis: An approach for enhanced both dissolution behaviour in biorelevant media and skin retention profiles. J Photochem Photobiol B Biol. 2020;205:111846. https://doi.org/10.1016/j.jphotobiol.2020.111846 DOI: https://doi.org/10.1016/j.jphotobiol.2020.111846
Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263-71. https://doi.org/10.1208/s12248-010-9185-1 PMid:20373062 DOI: https://doi.org/10.1208/s12248-010-9185-1
Osés SM, Marcos P, Azofra P, de Pabl A, Fernández-Muíño MÁ, Sancho MT. Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: Needs for analytical harmonization. Antioxidants. 2020;9:20-35. https://doi.org/10.3390/antiox9010075 DOI: https://doi.org/10.3390/antiox9010075
Balata GF, El-Moneom SH, Elmoneim A, Mohamed H, Abdullah HA, Abdulaziz AM. Propolis emulgel : A natural remedy for burn and wound propolis emulgel: A natural remedy for burn and wound. Drug Dev Ind Pharm. 2018;44(11):1797-1808. https://doi.org/10.1080/03639045.2018.1496449 PMid:29973098 DOI: https://doi.org/10.1080/03639045.2018.1496449
Aliyazıcıoglu R, Sahin H, Erturk O, Ulusoy E, Aliyazıcıoglu R, Sahin H, et al. Properties of phenolic composition and biological activity of propolis from Turkey. 2013;2013:2912. https://doi.org/10.1080/10942912.2010.551312 DOI: https://doi.org/10.1080/10942912.2010.551312
Feás X, Pacheco L, Iglesias A, Estevinho LM. Use of propolis in the sanitization of lettuce. Int J Mol Sci. 2014;15(7):12243-57. https://doi.org/10.3390/ijms150712243 PMid:25007823 DOI: https://doi.org/10.3390/ijms150712243
Modestas C, Ramanauskien K, Juškait V, Briedis V. Formulation of propolis phenolic acids containing microemulsions and their biopharmaceutical characterization 2016;2016:8175265. https://doi.org/10.1155/2016/8175265 PMid:27885330 DOI: https://doi.org/10.1155/2016/8175265
Zarate MS, del Abraham Juárez MR, García AC, López CO, Chávez AJ, de Garfias JJ, et al. Flavonoids, phenolic content, and antioxidant activity of propolis from various areas of Guanajuato, Mexico. Food Sci Technol. 2018;38:210-5. https://doi.org/10.1590/fst.29916 DOI: https://doi.org/10.1590/fst.29916
Yuliana ND, Wijaya CH, Nasrullah N. Classification of Trigona spp Bee Propolis from Four Regions in Indonesia Using FTIR Metabolomics Approach. Singapore: 13th Asean Asian Food Conference; 2013. p. 9-11.
Salim SA, Saputri FA, Saptarini NM, Levita J. Advantages limitations of folin-ciocalteu reagent in determining total ph levels in plants. Farmaka. 2020;18:46-57.
Sánchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velázquez DA. The Folin-Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal Methods. 2013;5:5990-9. https://doi.org/10.1039/c3ay41125g DOI: https://doi.org/10.1039/c3ay41125g
Lagouri V, Prasianaki D, Krysta F, Lagouri V, Prasianaki D, Krysta F. Antioxidant properties and phenolic composition of greek propolis extracts composition of greek propolis extracts. Int J Food Properties. 2014;17:511-22. https://doi.org/10.1080/10942912.2012.654561 DOI: https://doi.org/10.1080/10942912.2012.654561
Arianto A, Lie DY, Sumaiyah S, Bangun H. Preparation and evaluation of nanoemulgels containing a combination of grape seed oil and anisotriazine as sunscreen. Open Access Maced J Med Sci. 2020;8:994-9. https://doi.org/10.3889/oamjms.2020.5293 DOI: https://doi.org/10.3889/oamjms.2020.5293
Iradhati AH, Jufri M. Formulation and test of physical stability of griseofulvin gel microemulsion. FF UI J. 2016;2016:60293. DOI: https://doi.org/10.22159/ijap.2017.v9s1.22_27
Genatrika E, Nurhikmah I, Hapsari I. Formulation of Black Cumin Oil Cream Preparation (Nigella sativa L.) as an anti acne against propionibacterium acnes bacteria. Pharmacy.2016;13:192-201.
Sanaji JB, Krismala MS, Liananda FR. Pengaruh Konsentrasi Tween 80 Sebagai Surfaktan Terhadap Karakteristik Fisik Sediaan Nanoemulgel Ibuprofen The Effect Of Tween 80 Concentration As A Surfactant On Nanoemulgel Ibuprofen’s Physical Characteristics; 2019.
Khurana S, Jain NK, Bedi PM. Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation. Life Sci. 2013;92(6-7):383-92. https://doi.org/10.1016/j.lfs.2013.01.005 PMid:23353874 DOI: https://doi.org/10.1016/j.lfs.2013.01.005
Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: Formation, properties and applications. R Soc Chem. 2016;12:2826-41. https://doi.org/10.1039/c5sm02958a DOI: https://doi.org/10.1039/C5SM02958A
Wahyuningsih I, Putranti W. Optimization of tween 80 and polyethyleneglikol 400 comparison in self nanoemulsifying drug delivery system (SNEDDS) formula of black cumin seed oil. Pharmacy. 2015;12:223-41.
Mao Y, Chen X, Xu B, Shen Y, Ye Z, Chaurasiya B, et al. Eprinomectin nanoemulgel for transdermal delivery against endoparasites and ectoparasites: Preparation, in vitro and in vivo evaluation. Drug Deliv. 2019;26:1104-14. https://doi.org/10.1080/10717544.2019.1682720 PMid:31735104 DOI: https://doi.org/10.1080/10717544.2019.1682720
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems a review (Part 1). Trop J Pharm Res. 2013;12:255-64. DOI: https://doi.org/10.4314/tjpr.v12i2.19
Júnior JA, Baldo JB. The behavior of zeta potential of silica suspensions. N J Glass Ceramics 2014;4:29-37. DOI: https://doi.org/10.4236/njgc.2014.42004
Mukhlishah NR, Sugihartini N, Yuwono T. Irritation test and physical properties of unguentum volatile oil of Syzygium aromaticum in hydrocarbon base. Maj Farm 2016;12:255-71, 607-8.
Shan WY, Wicaksono IA. Formulasi Gel Ekstrak Kulit Manggis (Garcinia mangostana) Dengan Variasi Konsentrasi Basis. Farmaka. 2018;16:108-16.
Sulistyaningsih, Gozali D, Bambang RM, Mustarichie R. Ketoconazole emulgel formula activity test against Microsporum gypseum and Candida albicans. J Pharm Sci Res. 2017;9:2458-62.
Rowe RC, Sheskey PJ. Handbook of Pharmaceutical Excipients. 6th ed. London: The Pharmaceutical Press; 2009.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Afdil Viqar Viqhi, Marianti A. Manggau, Sartini Sartini, Elly Wahyudin, Latifah Rahman, Risfah Yulianti, Andi Dian Permana, Satria Aztasaury Awal (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0