The Role of Sex, Ethnicity, Age, and Nutritional Status in the Seropositivity of the Measles Vaccine

Authors

  • H. R. Teni Nurlatifah Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia; Department of Applied Midwifery, Master’s Study Program, STIKes Dharma Husada, Bandung, West Java, Indonesia
  • Wisnu Barlianto Department of Pediatric, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia https://orcid.org/0000-0001-6566-5335
  • I Wayan Arsana Wiyasa Department of Obstetrics and Gynecology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
  • H. M. S. Chandra Kusuma Department of Pediatric, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
  • Tita Luthfia Sari Department of Pediatric, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
  • Novilia Sjafri Bachtiar Bio Farma, Bandung, West Java, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.6685

Keywords:

Antibody, Determinant factors, Immunization, Measles, Seroconversion

Abstract

AIM: This study investigates the relationship between sex, ethnicity, age, nutritional status with the seropositivity of the Edmonston-Zagreb vaccine in children.

METHODS: A cross sectional, observational study was conducted. A total of 45 children were differentiated based on sex, ethnicity, age, and nutritional status when they received the Edmonston-Zagreb measle vaccine for the first time. Flow cytometry was used to look at differences in antibody status as well as populations of CD-4 and CD-8 cells that release IFN- γ.

RESULTS: We found no significant differences in antibody levels or CD-4 and CD-8 cell populations that secrete IFN- γ between boys and girls (p > 0.05). Besides, similar results were also confirmed in comparisons between Javanese and Sundanese ethnic groups, 9 months versus more than 9 months of age, or normal versus low body mass index (p > 0.05).

CONCLUSIONS: We conclude that sex, race, age, and nutritional status had no effect on immune response to vaccination. As a result, there was no barrier to seroconversion and optimal immunological performance in the children in this trial who received the Edmonston-Zagreb measles vaccination.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

de Vries R, Duprex W, de Swart R. Morbillivirus infections: An introduction. Viruses. 2015;7(2):699-706. https://doi.org/10.3390/v7020699 Mid:25685949 DOI: https://doi.org/10.3390/v7020699

Mina MJ, Kula T, Leng Y, Li M, de Vries RD, Knip M, et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366(6465):599-606. https://doi.org/10.1126/science.aay6485 PMid:31672891 DOI: https://doi.org/10.1126/science.aay6485

Rota PA, Moss WJ, Takeda M, de Swart RL, Thompson KM, Goodson JL. Measles. Nat Rev Dis Primers. 2016;14(2):16049. https://doi.org/10.1038/nrdp.2016.49 PMid:27411684 DOI: https://doi.org/10.1038/nrdp.2016.49

Xu J, Doyon-Plourde P, Tunis M, Quach C. Effect of early measles vaccination on long-term protection: A systematic review. Vaccine. 2021;39(22):2929-37. https://doi.org/10.1016/j.vaccine.2021.04.012 PMid:33926750 DOI: https://doi.org/10.1016/j.vaccine.2021.04.012

Zmerli O, Chamieh A, Maasro E, Azar E, Afif C. A challenging modified measles outbreak in vaccinated healthcare providers. Infect Prevent Pract. 2020;3(1):100105. https://doi.org/10.1016/j.infpip.2020.100105 PMid:34368732 DOI: https://doi.org/10.1016/j.infpip.2020.100105

World Health Organization. Regional Office for the Western Pacific. Measles Elimination Field Guide. Manila: WHO Regional Office for the Western Pacific; 2013. Available from: https://www.apps.who.int/iris/handle/10665/207664. [Last accessed on 2021 Jan 02]. https://doi.org/10.1093/ww/9780199540884.013.u248873 DOI: https://doi.org/10.1093/ww/9780199540884.013.U248873

World Health Organization. Measles Vaccines: WHO Position Paper Recommendations. Vaccine. Geneva: World Health Organization; 2017. https://doi.org/10.1016/j.vaccine.2017.07.066 DOI: https://doi.org/10.1016/j.vaccine.2016.11.017

Sitepu FY, Depari E, Mudatsir M, Harapan H. Being unvaccinated and contact with measles cases as the risk factors of measles outbreak, North Sumatera, Indonesia. Clin Epidemiol Global Health. 2020;8(1):239-43. https://doi.org/10.1016/j.cegh.2019.08.006 DOI: https://doi.org/10.1016/j.cegh.2019.08.006

Hartoyo E, Wiyatno E, Jaya UA, Ma’roef CN, Moganin C, Myint KS, et al. Occurrence of measles genotype D8 during a 2014 outbreak in Banjarmasin, South Kalimantan, Indonesia. Int J Infect Dis. 2017;54:1-3. https://doi.org/10.1016/j.ijid.2016.10.029 Mid:27825950 DOI: https://doi.org/10.1016/j.ijid.2016.10.029

Kementrian Kesehatan RI. Profil Kesehatan Indonesia Tahun 2017. Jakarta: Kementerian Kesehatan RI; 2018. Available from: https://www.kemkes.go.id/resources/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-Indonesia-tahun-2017.pdf. [Last accessed on 2021 Jan 05]. https://doi.org/10.7454/epidkes.v3i2.3176 DOI: https://doi.org/10.7454/epidkes.v3i2.3176

Uzicanin A, Zimmerman L. Field effectiveness of live attenuated measles-containing vaccines: a review of published literature. J Infect Dis. 2011;204(1):S133-48. https://doi.org/10.1093/infdis/jir102 PMid:21666154 DOI: https://doi.org/10.1093/infdis/jir102

Yeung LF, Lurie P, Dayan G, Eduardo E, Britz PH, Redd SB, et al. A limited measles outbreak in a highly vaccinated US boarding school. Pediatrics. 2005;116(6):1287-91. https://doi.org/10.1542/peds.2004-2718 PMid:16322148 DOI: https://doi.org/10.1542/peds.2004-2718

Bitzegeio J, Majowicz S, Matysiak-Klose D, Sagebiel D, Werber D. Estimating age-specific vaccine effectiveness using data from a large measles outbreak in Berlin, Germany, 2014/15: Evidence for waning immunity. Eurosurveillance. 2019;24(17):1800529. https://doi.org/10.2807/1560-7917.es.2019.24.17.1800529 PMid:31039834 DOI: https://doi.org/10.2807/1560-7917.ES.2019.24.17.1800529

Hughes SL, Bolotin S, Khan S, Li Y, Johnson C, Friedman L. The effect of time since measles vaccination and age at first dose on measles vaccine effectiveness-a systematic review. Vaccine. 2020;38(3):460-9. https://doi.org/10.1016/j.vaccine.2019.10.090 DOI: https://doi.org/10.1016/j.vaccine.2019.10.090

Kampmann B, Jones CE. Factors influencing innate immunity and vaccine responses in infancy. Philos Trans R Soc Lond B Biol Sci. 2015;370:1-5. https://doi.org/10.1098/rstb.2014.0148 PMid:25964459 DOI: https://doi.org/10.1098/rstb.2014.0148

Van Loveren H, Van Amsterdam JG, Vandebriel RJ, Kimman TG, Rümke HC, Steerenberg PS, et al. Vaccine-induced antibody responses as parameters of the influence of endogenous and environmental factors. Environ Health Perspect. 2001;109(8):757-64. https://doi.org/10.1289/ehp.01109757 PMid:11564609 DOI: https://doi.org/10.1289/ehp.01109757

Metcalf CJ, Klepac P, Ferrari M, Grais RF, Djibo A, Grenfell BT. Modelling the first dose of measles vaccination: The role of maternal immunity, demographic factors, and delivery systems. Epidemiol Infect. 2011;139(2):265-74. https://doi.org/10.1017/s0950268810001329 PMid:20525415 DOI: https://doi.org/10.1017/S0950268810001329

Voigt EA, Ovsyannikova IG, Haralambieva IA, Kennedy RB, Larrabee BR, Schaid DJ, et al. Genetically defined race, but not sex, is associated with higher humoral and cellular immune responses to measles vaccination. Vaccine. 2016;34(41):4913-19. https://doi.org/10.1016/j.vaccine.2016.08.060 PMid:27591105 DOI: https://doi.org/10.1016/j.vaccine.2016.08.060

Yan R, He H, Zhou Y, Xie S, Deng X, Tang Y. Study on factors associated with seroprotection after measles vaccination in children of 6-14 years in Eastern China. Vaccine. 2019;37(36):5185-90. https://doi.org/10.1016/j.vaccine.2019.07.075 PMid:31377078 DOI: https://doi.org/10.1016/j.vaccine.2019.07.075

Muthiah N, Galagoda G, Handunnetti S, Peiris S, Pathirana S. Dynamics of maternally transferred antibodies against measles, mumps, and rubella in infants in Sri Lanka. Int J Infect Dis. 2021;107:129-34. https://doi.org/10.1016/j.ijid.2021.04.002 PMid:33895406 DOI: https://doi.org/10.1016/j.ijid.2021.04.002

Harapan H, Shields N, Kachoria AG, Shotwell A, Wagner AL. Religion and measles vaccination in Indonesia, 1991-2017. Am J Prev Med. 2021;60(1):S44-52. https://doi.org/10.1016/j.amepre.2020.07.029 PMid:33189503 DOI: https://doi.org/10.1016/j.amepre.2020.07.029

Fernandez R, Anu Rammohan A, Awofeso N. Correlates of first dose of measles vaccination delivery and uptake in Indonesia. Asian Pac J Trop Med. 2011;4(2):140-5. https://doi.org/10.1016/s1995-7645(11)60055-2 PMid:21771439 DOI: https://doi.org/10.1016/S1995-7645(11)60055-2

Hardhantyo M, Chuang YC. Urban-rural differences in factors associated with incomplete basic immunization among children in Indonesia: A nationwide multilevel study. Pediatr Neonatol. 2021;62:80-9. https://doi.org/10.1016/j.pedneo.2020.09.004 DOI: https://doi.org/10.1016/j.pedneo.2020.09.004

Nurlatifah HR, Barlianto W, Wiyasa IW, Kusuma HM, Sari TL, Bachtiar NS. Analysis of specific antibody and cellular immune response to first-dose measles vaccine Edmonston- Zagreb in 9-month-old infants. Allergol Immunopathol (Madr). 2021;49(3):193-201. https://doi.org/10.15586/aei.v49i3.6 PMid:33938206 DOI: https://doi.org/10.15586/aei.v49i3.6

Njie-Jobe J, Nyamweya S, Miles DJ, van der Sande M, Zaman S, Touray E, et al. Immunological impact of an additional early measles vaccine in Gambian children: Responses to a boost at 3 years. Vaccine. 2012;30(15):2543-50. https://doi.org/10.1016/j.vaccine.2012.01.083 PMid:22314136 DOI: https://doi.org/10.1016/j.vaccine.2012.01.083

Nelson AN, Putnam N, Hauer D, Baxter VK, Adams RJ, Griffin DE. Evolution of T cell responses during measles virus infection and RNA clearance. Sci Rep. 2017;7(1):1-10. https://doi.org/10.1038/s41598-017-10965-z PMid:28904342 DOI: https://doi.org/10.1038/s41598-017-10965-z

Ashbaugh HR, Cherry JD, Hoff NA, Doshi RH, Alfonso VH, Gadoth A, et al. Measles antibody levels among vaccinated and unvaccinated children 6-59 months of age in the Democratic Republic of the Congo, 2013-2014. Vaccine. 2020;38(9):2258-65. https://doi.org/10.1016/j.vaccine.2019.09.047 PMid:32057333 DOI: https://doi.org/10.1016/j.vaccine.2019.09.047

Martins C, Garly ML, Bale C, Rodrigues A, Benn CS, Whittle H, et al. Measles antibody levels after vaccination with Edmonston-Zagreb and Schwarz measles vaccine at 9 months or at 9 and 18 months of age: A serological study within a randomised trial of different measles vaccines. Vaccine. 2013;31(48):5766-71. https://doi.org/10.1016/j.vaccine.2013.08.044 PMid:23994379 DOI: https://doi.org/10.1016/j.vaccine.2013.08.044

Carney JM, Warner MS, Borut T, Byrne W, Ament M, Cherry JD, et al. Cell-mediated immune defects and infection: A study of malnourished hospitalized children. Am J Dis Children. 1980;134(9):824-7. https://doi.org/10.1001/archpedi.1980.02130210008003 PMid:7416105 DOI: https://doi.org/10.1001/archpedi.1980.02130210008003

Neumann CG, Lawlor GJ Jr., Stiehm ER, Swenseid ME, Newton J, Herbert J, et al. Immunologic responses in malnourished children. Am J Clin Nutr. 1975;28(2):89-104. https://doi.org/10.1093/ajcn/28.2.89 PMid:803774 DOI: https://doi.org/10.1093/ajcn/28.2.89

Spencer PS, Mazumder R, Palmer VS, Lasarev MR, Stadnik RC, King P, et al. Environmental, dietary and case-control study of nodding syndrome in Uganda: A post-measles brain disorder triggered by malnutrition? J Neurol Sci. 2016;369:191-203. https://doi.org/10.1016/j.jns.2016.08.023 PMid:27653888 DOI: https://doi.org/10.1016/j.jns.2016.08.023

Moore SE, Goldblatt D, Bates CJ, Prentice AM. Impact of nutritional status on antibody responses to different vaccines in undernourished Gambian children. Acta Paediatr. 2003;92(2):170-6. https://doi.org/10.1111/j.1651-2227.2003.tb00522.x PMid:12710642 DOI: https://doi.org/10.1111/j.1651-2227.2003.tb00522.x

Dao H, Delisle H, Fournier P. Anthropometric status, serum prealbumin level and immune response to measles vaccination in Mali children. J Trop Pediatr. 1992;38(4):179-84. https://doi.org/10.1093/tropej/38.4.179 PMid:1527814 DOI: https://doi.org/10.1093/tropej/38.4.179

Downloads

Published

2021-10-07

How to Cite

1.
Nurlatifah HRT, Barlianto W, Wiyasa IWA, Kusuma HMSC, Sari TL, Bachtiar NS. The Role of Sex, Ethnicity, Age, and Nutritional Status in the Seropositivity of the Measles Vaccine. Open Access Maced J Med Sci [Internet]. 2021 Oct. 7 [cited 2024 Nov. 23];9(B):1219-23. Available from: https://oamjms.eu/index.php/mjms/article/view/6685

Issue

Section

Infective Diseases

Categories