The Potential of Vitamin D3 to Repaired Mucosal Injury in Dextran Sulfate Sodium Induced Acute Colitis in Mice

Authors

  • Satrio Wibowo Department of Pediatrics, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
  • Krisni Subandiyah Department of Pediatrics, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
  • Kusworini Handono Department of Clinical Pathology, Faculty of Medicine, University of Brawijaya, Malang, Indonesia
  • Sri Poeranto Department of Parasitology, Faculty of Medicine, University of Brawijaya, Malang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.6700

Keywords:

Colitis, Mucosal injury, Proliferation, Stem cells, Vitamin D3, Wnt pathway

Abstract

BACKGROUND: Inflammatory Bowel Disease (IBD) has become an emerging disease worldwide. The treatment of IBD involves two basic principles: Inflammation control and mucosal repair.

AIM: This study evaluates the potential effect of Vitamin D3 in mucosal repair through colon stem cell activation and proliferation.

METHODS: Dextran sulfate sodium (DSS; 5%) was used to induce colitis in mice. Vitamin D3 at various dosages was then administered as a treatment. The mice were divided into five groups: Control (C-); DSS only (C+); and DSS (5%) plus Vitamin D3 at 0.2 μg (VD1), 0.4 μg (VD2), or 0.6 μg (VD3) per 25 g body weight as the treatment groups. Immunofluorescence analyses of Lgr5+ expression indicated stem cell activation, and Ki67 expression indicated stem cell proliferation. The disease activity index (DAI), colon length, and histopathological index scores were determined after treatment to assess the inflammation and severity of colitis.

RESULTS: Immunofluorescence analyses showed a gradually increasing expression of Lgr5+ also Ki67 in proportion with high doses group of Vitamin D3 (p < 0.05). The colon length, DAI scores, and histopathological index scores improved in all groups after Vitamin D3 treatment (p = 0.05; p = 0.026; and p = 0.029, respectively).

CONCLUSION: Vitamin Dhas a potential beneficial effect on amplifying intestinal stem cells regulated by Wnt/B-catenin signaling. It is also reduced the inflammatory process proved by the evaluation severity of colitis. It might play an essential role in mucosal repair in IBD.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Gade AK, Douthit NT, Townsley E. Medical management of Crohn’s disease. Cureus. 2020;12(5):e8351. https://doi.org/10.7759/cureus.8351 PMid:32617224 DOI: https://doi.org/10.7759/cureus.8351

Xu CT, Meng SY, Pan BR. Drug therapy for ulcerative colitis. World J Gastroenterol. 2004;10(16):2311-7. PMid:15285010 DOI: https://doi.org/10.3748/wjg.v10.i16.2311

Gui X, Li J, Ueno A, Iacucci M, Qian J, Ghosh S. Histopathological features of inflammatory bowel disease are associated with different CD4+ T cell subsets in colonic mucosal lamina propria. J Crohns Colitis. 2018;12(12):1448-58. https://doi.org/10.1093/ecco-jcc/jjy116 PMid:30137280 DOI: https://doi.org/10.1093/ecco-jcc/jjy116

Lichtenstein GR, Rutgeerts P. Importance of mucosal healing in ulcerative colitis. Inflamm Bowel Dis. 2010;16(2):338-46. https://doi.org/10.1002/ibd.20997 PMid:19637362 DOI: https://doi.org/10.1002/ibd.20997

Dave M, Loftus EV Jr. Mucosal healing in inflammatory bowel disease-a true paradigm of success? Gastroenterol Hepatol (NY). 2012;8(1):29-38. PMid:22347830

Klenske E, Bojarski C, Waldner M, Rath T, Neurath MF, Atreya R. Targeting mucosal healing in Crohn’s disease: What the clinician needs to know. Therap Adv Gastroenterol. 2019;12:1756. https://doi.org/10.1177/1756284819856865 PMid:31236140 DOI: https://doi.org/10.1177/1756284819856865

Shimizu H, Suzuki K, Watanabe M, Okamoto R. Stem cell-based therapy for inflammatory bowel disease. Intest Res. 2019;17(3):311-6. https://doi.org/10.5217/ir.2019.00043 PMid:31352774 DOI: https://doi.org/10.5217/ir.2019.00043

Zhao H, Zhang H, Wu H, Li H, Liu L, Guo J, et al. Protective role of 1, 25 (OH) 2 Vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice. BMC Gastroenterol. 2012;12:57. https://doi.org/10.1186/1471-230x-12-57 PMid:22647055 DOI: https://doi.org/10.1186/1471-230X-12-57

Cosín-Roger J, Ortiz-Masiá D, Calatayud S, Hernández C, Alvarez A, Hinojosa J, et al. M2 macrophages activate WNT signaling pathway in epithelial cells: Relevance in ulcerative colitis. PLoS One. 2013;8(10):e78128. https://doi.org/10.1371/journal.pone.0078128 PMid:24167598 DOI: https://doi.org/10.1371/journal.pone.0078128

Choi YS, Zhang Y, Xu M, Yang Y, Ito M, Peng T, et al. Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell. 2013;13(6):720-33. https://doi.org/10.1016/j.stem.2013.10.003 PMid:24315444 DOI: https://doi.org/10.1016/j.stem.2013.10.003

Flanagan DJ, Austin CR, Vincan E, Phesse TJ. Wnt signalling in gastrointestinal epithelial stem cells. Genes (Basel). 2018;9(4):178. https://doi.org/10.3390/genes9040178 PMid:29570681 DOI: https://doi.org/10.3390/genes9040178

Carmon KS, Gong X, Yi J, Wu L, Thomas A, Moore CM, et al. LGR5 receptor promotes cell-cell adhesion in stem cells and colon cancer cells via the IQGAP1-Rac1 pathway. J Biol Chem. 2017;292(36):14989-5001. https://doi.org/10.1074/jbc.m117.786798 PMid:28739799 DOI: https://doi.org/10.1074/jbc.M117.786798

Cidado J, Wong HY, Rosen DM, Cimino-Mathews A, Garay JP, Fessler AG, et al. Ki-67 is required for maintenance of cancer stem cells but not cell proliferation. Oncotarget. 2016;7(5):6281-93. PMid:26823390 DOI: https://doi.org/10.18632/oncotarget.7057

Murthy SN, Cooper HS, Shim H, Shah RS, Ibrahim SA, Sedergran DJ. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig Dis Sci. 1993;38(9):1722-34. https://doi.org/10.1007/bf01303184 PMid:8359087 DOI: https://doi.org/10.1007/BF01303184

Kitajima S, Takuma S, Morimoto M. Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp Anim. 2000;49(1):9-15. https://doi.org/10.1538/expanim.49.9 PMid:10803356 DOI: https://doi.org/10.1538/expanim.49.9

Abreu-Delgado Y, Isidro RA, Torres EA, González A, Cruz ML, Isidro AA, et al. Serum Vitamin D and colonic Vitamin D receptor in inflammatory bowel disease. World J Gastroenterol. 2016;22(13):3581-91. https://doi.org/10.3748/wjg.v22.i13.3581 PMid:27053850 DOI: https://doi.org/10.3748/wjg.v22.i13.3581

Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68-75. https://doi.org/10.4161/org.4.2.5851 PMid:19279717 DOI: https://doi.org/10.4161/org.4.2.5851

Peregrina K, Houston M, Daroqui C, Dhima E, Dhima E, Sellers RS, Augenlicht LH. Vitamin D is a determinant of mouse intestinal Lgr5 stem cell functions. Carcinogenesis. 2015;36(1):25-31. https://doi.org/10.1093/carcin/bgu221 PMid:25344836 DOI: https://doi.org/10.1093/carcin/bgu221

Huang J, Chen T, Liu Y, Lyu L, Li X, Yue W. How would serum 25 (OH) D level change in patients with inflammatory bowel disease depending on intestinal mucosa Vitamin D receptor (VDR) and Vitamin D1-α _hydroxylase (CYP27B1)? Turk J Gastroenterol. 2019;30(2):132-8. https://doi.org/10.5152/tjg.2018.17828 PMid:30429108 DOI: https://doi.org/10.5152/tjg.2018.17828

Fernández-Barral A, Costales-Carrera A, Buira SP, Jung P, Ferrer-Mayorga G, Larriba MJ, et al. Vitamin D differentially regulates colon stem cells in patient-derived normal and tumor organoids. FEBS J. 2020;287(1):53-72. https://doi.org/10.1111/febs.14998 PMid:31306552 DOI: https://doi.org/10.1111/febs.14998

Garcia PM, Moore J, Kahan D, Hong MY. Effects of Vitamin D supplementation on inflammation, colonic cell kinetics, and microbiota in colitis: A review. Molecules. 2020;25(10):2300. https://doi.org/10.3390/molecules25102300 PMid:32422882 DOI: https://doi.org/10.3390/molecules25102300

Pike JW, Meyer MB. The Vitamin D receptor: New paradigms for the regulation of gene expression by 1, 25-dihydroxyvitamin D(3). Endocrinol Metab Clin North Am. 2010;39(2):255-69. PMid:20511050 DOI: https://doi.org/10.1016/j.ecl.2010.02.007

Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, et al. Vitamin D and human health: Lessons from Vitamin D receptor null mice. Endocr Rev. 2008;29(6):726-76. https://doi.org/10.1210/er.2008-0004 PMid:18694980 DOI: https://doi.org/10.1210/er.2008-0004

Bradford EM, Ryu SH, Singh AP, Lee G, Goretsky T, Sinh P, et al. Epithelial TNF receptor signaling promotes mucosal repair in inflammatory bowel disease. J Immunol. 2017;199(5):1886-97. https://doi.org/10.4049/jimmunol.1601066 PMid:28747340 DOI: https://doi.org/10.4049/jimmunol.1601066

Ardesia M, Ferlazzo G, Fries W. Vitamin D and inflammatory bowel disease. Biomed Res Int. 2015;2015:470805. https://doi.org/10.1155/2015/470805 PMid:26000293 DOI: https://doi.org/10.1155/2015/470805

Chen QQ, Yan L, Wang CZ, Wang WH, Shi H, Su BB, et al. Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses. World J Gastroenterol. 2013;19(29):4702-17. https://doi.org/10.3748/wjg.v19.i29.4702 PMid:23922467 DOI: https://doi.org/10.3748/wjg.v19.i29.4702

Downloads

Published

2021-09-11

How to Cite

1.
Wibowo S, Subandiyah K, Handono K, Poeranto S. The Potential of Vitamin D3 to Repaired Mucosal Injury in Dextran Sulfate Sodium Induced Acute Colitis in Mice. Open Access Maced J Med Sci [Internet]. 2021 Sep. 11 [cited 2024 Apr. 20];9(B):931-6. Available from: https://oamjms.eu/index.php/mjms/article/view/6700

Issue

Section

Gastroenterohepatology

Categories

Most read articles by the same author(s)