Mathematical Modeling of the Pandemic Peak

Authors

  • Nadezhda Cherkunova Sayano-Shushensky Branch, Siberian Federal University, Republic of Khakassia, Russia

DOI:

https://doi.org/10.3889/oamjms.2022.6717

Keywords:

Coronavirus, Morbidity, Recovery rates, Susceptibility to disease

Abstract

BACKGROUND:  The article examines the history and statistics of the pandemic spread.

AIM: The study aimed to  develop a mathematical model reflecting the time dependence of the parameters characterizing the spread of the pandemic.

MATERIALS AND METHODS: Differential equations were used to study the spread of the pandemic.

RESULTS:  The case, where the coefficients of morbidity and recovery are different is considered. The patterns of change in the number of people susceptible to the disease and the number of infectious patients are revealed as a function of time. Using the developed model, the peak of the pandemic is found, i.e., the time at which the number of infectious patients will be the maximum.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Murray D. Infectious Diseases in Children. Moscow: Praktika; 2006.

Timakov VD, Levashev VS, Borisov LB. Microbiology. Moscow: Medicine; 1983.

Smorodintsev AA. Conversations about Viruses. Moscow: Eureka; 1982.

Khaitov RM, Ignatieva GA. Narodnaya Akademiya Kul’tury i Obshchechelovecheskih Cennostej. Moscow: People’s Academy of Culture and Universal Values; 1992.

Zlatogorov SI. Epidemiology and Microbiology of Cholera. Moscow; Oxford University Press; 1947.

Samtsov AV, Barbinov VV. Skin and Venereal Diseases. Moscow: ELBI; 2002.

Greenwood BM, Bojang K, Whitty CJ, Targett GA. Malaria. Lancet. 2005;365(9469):1487-98. https://doi.org/10.1016/S0140-6736(05)66420-3 PMid:15850634 DOI: https://doi.org/10.1016/S0140-6736(05)66420-3

Domaradsky IV. The Plague. Moscow: Medicine; 1998.

Kazantsev AP, Matkovsky VS. Handbook of Infectious Diseases. Moscow: Medicine; 1985.

Parrish CR, Holmes EC, Morens DM, Park EC, Burke DS, Calisher CH, et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev. 2008;72(3):457-70. https://doi.org/10.1128/MMBR.00004-08 PMid:18772285 DOI: https://doi.org/10.1128/MMBR.00004-08

Baudel H, De Nys H, Ngole EM, Peeters M, Desclaux A. Understanding Ebola virus and other zoonotic transmission risks through human-bat contacts: Exploratory study on knowledge, attitudes, and practices in Southern Cameroon. Zoonoses Public Health. 2019;66(3):288-95. https://doi.org/10.1111/zph.12563 PMid:30677236 DOI: https://doi.org/10.1111/zph.12563

Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A. Fruit bats as reservoirs of Ebola virus. Nature. 2005;438:575-6. https://doi.org/10.1038/438575a PMid:16319873 DOI: https://doi.org/10.1038/438575a

Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145(6):e20200702. https://doi.org/10.1542/peds.2020-0702 PMid:32179660 DOI: https://doi.org/10.1542/peds.2020-0702

Coronavirus Disease (COVID-19) Pandemic. Geneva: World Health Organization; 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 [Last accessed on 2021 Oct 20].

Paules CI, Marston HD, Fauci AS. Coronavirus Infections-more Than Just the Common Cold. JAMA. 2020;323(8):707. DOI: https://doi.org/10.1001/jama.2020.0757

Coronavirus: Symptoms and Prophylactics; 2021. Available from: https://www.medikom.ua/ru/koronavirus-simptomy-iprofilaktika [Last accessed on 2021 Oct 20].

Cherkunova NG. Mathematical modeling of economic processes. Espac Bus Int Manag. 2017;38(48):7.

Braun M. Differential Equation Models. New York: Springer; 1983 DOI: https://doi.org/10.1007/978-1-4612-5427-0

Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc 1927;115(772):700-21. DOI: https://doi.org/10.1098/rspa.1927.0118

Bartlett MS. An Introduction to Stochastic Processes, with Special Reference to Methods and Applications. 3rd ed. Cambridge: Cambridge University Press; 1978. p. 388.

Bailey N. Mathematics in biology and medicine. Moscow: Mir; 1970. p. 327.

Kendall DG. Discussion of ’Measles periodicity and community size. J Roy Stat Soc Ser A. 1957;120:64-76. DOI: https://doi.org/10.2307/2342553

Balanter BI, Khanin MA, Chernavsky DS. Introduction to Mathematical Modeling of Pathological Processes. Moscow: Medicine; 1980. p. 262.

Gray A, Greenhalgh D, Mao X, Pan J. The SIS Epidemic Model with Markovian Switching. Available from: http://www.strathprints.strath.ac.uk/41322 [Last accessed on 2021 Oct 20].

Downloads

Published

2022-01-01

How to Cite

1.
Cherkunova N. Mathematical Modeling of the Pandemic Peak. Open Access Maced J Med Sci [Internet]. 2022 Jan. 1 [cited 2024 Nov. 21];10(E):22-6. Available from: https://oamjms.eu/index.php/mjms/article/view/6717