Remineralization potential and mechanical evaluation of a bioactive glass containing composite (An ex vivo study)

Authors

  • Nouran Hussein Dental Materials Department, Faculty of Dentistry, British University in Egypt (BUE), Cairo, Egypt https://orcid.org/0000-0003-3162-9197
  • Dina A. El Refai Department of Biomaterials, Faculty of Dentistry, Ain-Shams University, Cairo, Egypt
  • Ghada Atef Alian Department of Biomaterials, Faculty of Dentistry, Ain-Shams University, Cairo, Egypt

DOI:

https://doi.org/10.3889/oamjms.2021.6725

Keywords:

Resin composites, Remineralization, ACTIVA, Ion release, Wear, Micro-shear bond

Abstract

Abstract

AIM: The aim of this study was to compare the remineralization ability, ion release, microshear bond strength and wear resistance of a claimed bioactive restorative material (ACTIVA BioACTIVE Restorative, Pulpdent Corporation, Watertown, USA) with the conventional resin composite (​Filtek Z350 XT, 3M ESPE Elipar, Germany).

MATERIALS AND METHODS: The remineralization ability was evaluated after 28 days using Energy Dispersive X-Ray (EDX) analysis. Ion release was investigated at three-time intervals: 1, 14 and 28 days. Calcium and phosphate ions release were determined by using ion chromatography system. Microshear bond strength was assessed using Universal Testing Machine. A wear test was conducted using a dual axis chewing simulator.

RESULTS: ACTIVA™ was found to induce remineralization to the demineralized dentin. Results revealed that ACTIVA™ released Ca2+ and PO4-3 ions, whilst Filtek Z350 XT did not. Concerning microshear bond strength ACTIVA™ without adhesive application showed unacceptable failure. Regarding wear resistance there was no statistically significant difference between them.

CONCLUSION: ACTIVA™ bioactive restorative material seems promising bioactive restorative materials. Clinical trials are recommended to compare clinical performance of ACTIVA™ with the other restorative materials.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

El-Mansy LH, Ali MM, Hassan RELS, Beshr KA, El Ashry SH. Evaluation of the biocompatibility of a recent bioceramic root canal sealer (BiorootTM rcs): In-vivo study. Open Access Maced J Med Sci. 2020;8:100-6. https://doi.org/10.3889/oamjms.2020.4361 DOI: https://doi.org/10.3889/oamjms.2020.4361

Zaki DY, Zaazou MH, Khallaf ME, Hamdy TM. In vivo comparative evaluation of periapical healing in response to a calcium silicate and calcium hydroxide based endodontic sealers. Open Access Maced J Med Sci. 2018;6(8):1475-9. https://doi.org/10.3889/oamjms.2018.293 PMid:30159080 DOI: https://doi.org/10.3889/oamjms.2018.293

Alagha E, Samy AM. Effect of different remineralizing agents on white spot lesions. Open Access Maced J Med Sci. 2021;9:14-8. https://doi.org/10.3889/oamjms.2021.5662 DOI: https://doi.org/10.3889/oamjms.2021.5662

Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJ. Longevity of posterior composite restorations: Not only a matter of materials. Dent Mater. 2012;28(1):87-101. https://doi.org/10.1016/j.dental.2011.09.003 PMid:22192253 DOI: https://doi.org/10.1016/j.dental.2011.09.003

Ferracane JL. Resin composite-state of the art. Dent Mater. 2011;27(1):29-38. PMid:21093034 DOI: https://doi.org/10.1016/j.dental.2010.10.020

Drummond JL. Degradation, fatigue, and failure of resin dental composite materials. J Dent Res. 2008;87(8):710-9. https://doi.org/10.1177/154405910808700802 PMid:18650540 DOI: https://doi.org/10.1177/154405910808700802

Bayne SC. Dental biomaterials: Where are we and where are we going? J Dent Educ. 2005;69(5):571-85. https://doi.org/10.1002/j.0022-0337.2005.69.5.tb03943.x PMid:15897337 DOI: https://doi.org/10.1002/j.0022-0337.2005.69.5.tb03943.x

Watts DC, Marouf AS, Al-Hindi AM. Photo-polymerization shrinkage-stress kinetics in resin-composites: Methods development. Dent Mater. 2003;19(1):1-11. https://doi.org/10.1016/s0109-5641(02)00123-9 PMid:12498890 DOI: https://doi.org/10.1016/S0109-5641(02)00123-9

Ferracane JL. Models of caries formation around dental composite restorations. J Dent Res. 2017;96(4):364-71. https://doi.org/10.1177/0022034516683395 PMid:28318391 DOI: https://doi.org/10.1177/0022034516683395

De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, et al. A critical review of the durability of adhesion to tooth tissue: Methods and results. J Dent Res. 2005;84(2):118-

https://doi.org/10.1177/154405910508400204 PMid:15668328 DOI: https://doi.org/10.1177/154405910508400204

Hamdy T. Polymerization shrinkage in contemporary resin-based dental composites: A review article. Egypt J Chem. 2021;64(6):3087-92. https://doi.org/10.21608/ejchem.2021.60131.3286 DOI: https://doi.org/10.21608/ejchem.2021.60131.3286

Gandolfi MG, Taddei P, Siboni F, Modena E, De Stefano ED, Prati C. Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid “smart” materials. Dent Mater. 2011;27(11):1055-69. https://doi.org/10.1016/j.dental.2011.07.007 PMid:21840044 DOI: https://doi.org/10.1016/j.dental.2011.07.007

Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5(6):117-41. https://doi.org/10.1002/jbm.820050611 DOI: https://doi.org/10.1002/jbm.820050611

Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17(11):967-78. PMid:17122907 DOI: https://doi.org/10.1007/s10856-006-0432-z

Combes C, Rey C. Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362-78. https://doi.org/10.1016/j.actbio.2010.02.017 DOI: https://doi.org/10.1016/j.actbio.2010.02.017

Zhao J, Liu Y, Sun W, Zhang H. Amorphous calcium phosphate and its application in dentistry. Chem Central J BioMed Central. 2011;5:40. PMid:21740535 DOI: https://doi.org/10.1186/1752-153X-5-40

Jandt KD, Sigusch BW. Future perspectives of resin-based dental materials. Dent Mater. 2009;25(8):1001-6. https://doi.org/10.1016/j.dental.2009.02.009 PMid:19332352 DOI: https://doi.org/10.1016/j.dental.2009.02.009

Ryou H, Niu LN, Dai L, Pucci CR, Arola DD, Pashley DH, et al. Effect of biomimetic remineralization on the dynamic nanomechanical properties of dentin hybrid layers. J Dent Res. 2011;90(9):1122-8. https://doi.org/10.1177/0022034511414059 PMid:21730254 DOI: https://doi.org/10.1177/0022034511414059

Abdelnabi A, Hamza MK, El-Borady OM, Hamdy TM. Effect of different formulations and application methods of coral calcium on its remineralization ability on carious enamel. Open Access Maced J Med Sci. 2020;8:94-9. https://doi.org/10.3889/oamjms.2020.4689 DOI: https://doi.org/10.3889/oamjms.2020.4689

Garoushi S, Vallittu PK, Lassila L. Characterization of fluoride releasing restorative dental materials. Dent Mater J. 2018;37(2):293-300. https://doi.org/10.4012/dmj.2017-161 PMid:29279547 DOI: https://doi.org/10.4012/dmj.2017-161

BioACTIVE Dual Cure Products. Product Description. BioACTIVE-BASE/LINER TM Moisture Friendly Dual Cure Fluoride Releasing Radiopaque ACTIVA. India: BioACTIVE Dual Cure Products; 2016. p. 2-3.

Jun SK, Lee JH, Lee HH. The biomineralization of a bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells. Biomed Res Int. 2017;2017:2495282. https://doi.org/10.1155/2017/2495282 PMid:28232937 DOI: https://doi.org/10.1155/2017/2495282

Gandolfi MG, Siboni F, Primus CM, Prati C. Ion release, porosity, solubility, and bioactivity of MTA plus tricalcium silicate. J Endod. 2014;40(10):1632-7. https://doi.org/10.1016/j.joen.2014.03.025 PMid:25260736 DOI: https://doi.org/10.1016/j.joen.2014.03.025

Awosanya K, Nicholson JW. A study of phosphate ion release from glass-ionomer dental cements. J Mater Sci. 2014;58(3):210-4.

Arab M, Al-Sarraf E, Al-Shammari M, Qudeimat M. Microshear bond strength of different restorative materials to teeth with molar-incisor-hypomineralisation (MIH): A pilot study. Eur Arch Paediatr Dent. 2019;20(1):47-51. https://doi.org/10.1007/s40368-018-0384-2 PMid:30406461 DOI: https://doi.org/10.1007/s40368-018-0384-2

Bumrungruan C, Sakoolnamarka R. Microshear bond strength to dentin of self-adhesive flowable composite compared with total-etch and all-in-one adhesives. J Dent Sci. 2016;11(4):449-56. https://doi.org/10.1016/j.jds.2016.08.003 DOI: https://doi.org/10.1016/j.jds.2016.08.003

Torres GB, da Silva TM, Basting RT, Bridi EC, França FM, Turssi CP, et al. Resin-dentin bond stability and physical characterization of a two-step self-etching adhesive system associated with TiF4. Dent Mater. 2017;33(10):1157-70. https://doi.org/10.1016/j.dental.2017.07.016 PMid:28781068 DOI: https://doi.org/10.1016/j.dental.2017.07.016

Balamurugan A, Balossier G, Michel J, Kannan S, Benhayoune H, Rebelo AH, et al. Nanoleakage and microshear bond strength in deproteinized human dentin. J Biomed Mater Res. 2007;5(3):546-53. PMid:17022053 DOI: https://doi.org/10.1002/jbm.b.30827

Gwon B, Bae E Bin, Lee JJ, Cho WT, Bae HY, Choi JW, et al. Wear characteristics of dental ceramic CAD/CAM materials opposing various dental composite resins. Materials (Basel). 2019;12(11):1839. https://doi.org/10.3390/ma12111839 PMid:31174298 DOI: https://doi.org/10.3390/ma12111839

Fugolin AP, Pfeifer CS. New resins for dental composites. J Dent Res. 2017;96(10):1085-91. https://doi.org/10.1177/0022034517720658 PMid:28732183 DOI: https://doi.org/10.1177/0022034517720658

Ruengrungsom C, Burrow MF, Parashos P, Palamara JE. Evaluation of F, Ca, and P release and microhardness of eleven ion-leaching restorative materials and the recharge efficacy using a new Ca/P containing fluoride varnish. J Dent. 2020;102:103474. https://doi.org/10.1016/j.jdent.2020.103474 PMid:32941973 DOI: https://doi.org/10.1016/j.jdent.2020.103474

Koutroulis A, Kuehne SA, Cooper PR, Camilleri J. The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Sci Rep. 2019;9(1):19019. https://doi.org/10.1038/s41598-019-55288-3 DOI: https://doi.org/10.1038/s41598-019-55288-3

van Dijken JW, Pallesen U, Benetti A. A randomized controlled evaluation of posterior resin restorations of an altered resin modified glass-ionomer cement with claimed bioactivity. Dent Mater. 2019;35(2):335-43. https://doi.org/10.1016/j.dental.2018.11.027 PMid:30527586 DOI: https://doi.org/10.1016/j.dental.2018.11.027

Benetti AR, Michou S, Larsen L, Peutzfeldt A, Pallesen U, van Dijken JW. Adhesion and marginal adaptation of a claimed bioactive, restorative material. Biomater Investig Dent. 2019;6(1):90-8. https://doi.org/10.1080/26415275.2019.1696202 PMid:31998876 DOI: https://doi.org/10.1080/26415275.2019.1696202

Bansal R, Burgess J, Lawson NC. Wear of an enhanced resin-modified glass-ionomer restorative material. Am J Dent. 2016;29(3):171-4. PMid:27505995

Latta MA, Tsujimoto A, Takamizawa T, Barkmeier WW. In vitro wear resistance of self-adhesive restorative materials. J Adhes Dent. 2020;22(1):59-64. PMid:32030376

Roulet JF, Hussein H, Abdulhameed NF, Shen C. In vitro wear of two bioactive composites and a glass ionomer cement. Dtsch Zahnärztliche Zeitschrift Int. 2019;1(1):24-30.

Downloads

Published

2021-09-03

How to Cite

1.
Hussein N, El Refai DA, Atef Alian G. Remineralization potential and mechanical evaluation of a bioactive glass containing composite (An ex vivo study). Open Access Maced J Med Sci [Internet]. 2021 Sep. 3 [cited 2024 Apr. 20];9(D):179-85. Available from: https://oamjms.eu/index.php/mjms/article/view/6725

Issue

Section

Prosthodontics

Categories