The Relationship between Hair Zinc Levels and Drug-resistant Epilepsy in Children at Sanglah Hospital

Authors

  • I Gusti Ngurah Made Suwarba Department of Child Health, Faculty of Medicine, Udayana University, Sanglah Hospital, Denpasar, Bali, Indonesia
  • Dewi Sutriani Mahalini Department of Child Health, Faculty of Medicine, Udayana University, Sanglah Hospital, Denpasar, Bali, Indonesia https://orcid.org/0000-0002-6492-3475
  • I Gusti Ngurah Agung Jayadhi Widyakusuma Department of Child Health, Faculty of Medicine, Udayana University, Sanglah Hospital, Denpasar, Bali, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.6729

Keywords:

Hair zinc level, Drug-resistant epilepsy, Children

Abstract

BACKGROUND: Drug-resistant epilepsy (DRE) is epilepsy that is failed to achieve free of seizure after adequate trials of two tolerated and appropriately chosen antiepileptic drugs. Zinc deficiency could trigger the onset of various neurological disorders, including seizures in epilepsy.

AIM: The objective of the study was to determine the relationship between hair zinc levels and DRE in children at Sanglah Hospital, Denpasar.

METHODS: This is an analytic observational study using a cross-sectional design, involving 74 subjects. The inclusion criteria were children aged 1 month–18 years who had been diagnosed with epilepsy. Chi-square test and multivariate analysis with logistic regression were used to assess the relation between hair zinc levels and DRE in children.

RESULTS: Multivariate analysis found a relationship between low hair zinc level and DRE in children (PR 8.0; 95% CI 2.0–32.2; p = 0.003). The duration of therapy (PR 16.0; 95% CI 3.9–65.4; p = 0.000) and structural abnormalities (PR 4.1; 95% CI 1.1–14.9; p = 0.028) also increased the risk of DRE in this study.

CONCLUSION: Low hair zinc level is associated with DRE in children.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011;365:919-26. DOI: https://doi.org/10.1056/NEJMra1004418

Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Hauser WA, Mathern G, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51(6):1069-77. https://doi.org/10.1111/j.1528-1167.2009.02397.x PMıd:19889013 DOI: https://doi.org/10.1111/j.1528-1167.2009.02397.x

Berg AT, Zelko FA, Levy SR, Testa FM. Age at onset of epilepsy, pharmacoresistance, and cognitive outcomes: A prospective cohort study. Neurology. 2012;79(13):1384-91. https://doi.org/10.1212/wnl.0b013e31826c1b55 PMıd:22972641 DOI: https://doi.org/10.1212/WNL.0b013e31826c1b55

Widodo D. Risk Factors for Difficultly Cured Epilepsy in Children Under 5 Years Old: Development of a Scoring System to Predict Early, PhD. Indonesia: University of Indonesia; 2012.

Suwarba IG. Insidens dan karakteristik klinis epilepsi pada Anak. Sari Pediatri. 2016;13:123-8. https://doi.org/10.14238/sp13.2.2011.123-8 DOI: https://doi.org/10.14238/sp13.2.2011.123-8

So E. Predictors of outcome in newly diagnosed epilepsy: Clinical, EEG and MRI. Neurol Asia. 2011;16:27-9.

Prasad DKV, Shaheen U, Satyanarayana U, Surya Prabha T, Jyothy A, Munshi A. Association of serum trace elements and minerals with genetic generalized epilepsy and idiopathic intractable epilepsy. Neurochem Res. 2014;39(12):2370-6. https://doi.org/10.1007/s11064-014-1439-3 PMıd:25255736 DOI: https://doi.org/10.1007/s11064-014-1439-3

Saad K, El-Houfey AA, Abd El-Hamed MA, El-Asheer OM, Al-Atram AA, Tawfeek MS. A randomized, double-blind, placebo-controlled clinical trial of the efficacy of treatment with zinc in children with intractable epilepsy. Funct Neurol. 2015;30(3):181-5. https://doi.org/10.11138/fneur/2015.30.3.181 PMıd:26415035 DOI: https://doi.org/10.11138/FNeur/2015.30.3.181

Talat MA, Ahmed A, Mohammed L. Serum levels of zinc and copper in epileptic children during long-term therapy with anticonvulsants. Neurosciences. 2015;20(4):341-5. https://doi.org/10.17712/nsj.2015.4.20150336 PMıd:26492112 DOI: https://doi.org/10.17712/nsj.2015.4.20150336

Kipnis PA, Sullivan BJ, Kadam SD. Sex-dependent signaling pathways underlying seizure susceptibility and the role of chloride cotransporters. Cells. 2019;8(5):448. https://doi.org/10.3390/cells8050448 PMıd:31085988 DOI: https://doi.org/10.3390/cells8050448

Minardi C, Minacapelli R, Valastro P, Vasile F, Pitino S, Pavone P, et al. Epilepsy in children: From diagnosis to treatment with focus on emergency. J Clin Med. 2019;8(1):39. https://doi.org/10.20944/preprints201810.0114.v1 PMıd:30609770 DOI: https://doi.org/10.3390/jcm8010039

Andrade JP, Paula-Barbosa MM. Protein malnutrition alters the cholinergic and GABAergic systems of the hippocampal formation of the adult rat: An immunocytochemical study. Neurosci Lett. 1996;211(3):211-5. https://doi.org/10.1016/0304-3940(96)12734-8 PMıd:8817578 DOI: https://doi.org/10.1016/0304-3940(96)12734-8

Seven M, Basaran SY, Cengiz M, Unal S, Yuksel A. Deficiency of selenium and zinc as a causative factor for idiopathic intractable epilepsy. Epilepsy Res. 2013;104(1-2):35-9. https://doi.org/10.1016/j.eplepsyres.2012.09.013 PMıd:23103062 DOI: https://doi.org/10.1016/j.eplepsyres.2012.09.013

Viteva E. Basic cellular and molecular mechanisms of refractory epilepsy: A review of current hypotheses. Mol Cell Epilepsy. 2014;1:e17. https://doi.org/10.14800/mce.17

Elshorbagy H, Bassiouny M, Kamal N, Azab A, Ghoneim I. Study of trace elements and role of zinc supplementation in children with ıdiopathic ıntractable epilepsy. J Pediatr Epilepsy. 2015;5:1567854. https://doi.org/10.1055/s-0035-1567854 DOI: https://doi.org/10.1055/s-0035-1567854

Eissa MA, Abdulghani KO, Nada MA, Elkhawas HM, Shouman AE, Ahmed NS. Serum zinc and copper levels in a sample of Egyptian epileptic children. Egypt J Neurol Psychiatry Neurosurg. 2020;56:79. https://doi.org/10.1186/s41983-020-00210-2 DOI: https://doi.org/10.1186/s41983-020-00210-2

Takeda A, Minami A, Takefuta S, Tochigi M, Oku N. Zinc homeostasis in the brain of adult rats fed zinc-deficient diet. J Neurosci Res. 2001;63(5):447-52. https://doi.org/10.1002/1097-4547(20010301)63:5<447:aid-jnr1040>3.0.co;2-c PMid:11223920 DOI: https://doi.org/10.1002/1097-4547(20010301)63:5<447::AID-JNR1040>3.0.CO;2-C

Koç ER, Ilhan A, Null ZA, Acar B, Gürler M, Altuntaş A, et al. A comparison of hair and serum trace elements in patients with Alzheimer disease and healthy participants. Turk J Med Sci. 2015;45(5):1034-9. https://doi.org/10.3906/sag-1407-67 PMid:26738344 DOI: https://doi.org/10.3906/sag-1407-67

Han TH, Lee J, Kim YJ. Hair zinc level analysis and correlative micronutrients in children presenting with malnutrition and poor growth. Pediatr Gastroenterol Hepatol Nutr. 2016;19(4):259-68. https://doi.org/10.5223/pghn.2016.19.4.259 PMıd:28090471 DOI: https://doi.org/10.5223/pghn.2016.19.4.259

Zhou T, Li Z, Shi W, Wu L, Christie P. Copper and zinc concentrations in human hair and popular food stuffs in China. Hum Ecol Risk Assess. 2016;23:1229117. https://doi.org/10.10 80/10807039.2016.1229117

Tóth K. Zinc in neurotransmission. Ann Rev Nutr. 2011;31:139-53. https://doi.org/10.1146/annurev-nutr-072610-145218 PMıd:21548772 DOI: https://doi.org/10.1146/annurev-nutr-072610-145218

Xue-Ping W, Hai-Jiao W, Li-Na Z, Xu D, Ling L. Risk factors for drug-resistant epilepsy: A systematic review and meta-analysis. Medicine. 2019;98(30):e16402. https://doi.org/10.1097/md.0000000000016402 PMıd:31348240 DOI: https://doi.org/10.1097/MD.0000000000016402

Downloads

Published

2021-09-21

How to Cite

1.
Suwarba IGNM, Mahalini DS, Widyakusuma IGNAJ. The Relationship between Hair Zinc Levels and Drug-resistant Epilepsy in Children at Sanglah Hospital. Open Access Maced J Med Sci [Internet]. 2021 Sep. 21 [cited 2024 Apr. 25];9(B):996-1000. Available from: https://oamjms.eu/index.php/mjms/article/view/6729

Most read articles by the same author(s)