Purple Sweet Potato Phytochemicals: Potential Chemo-preventive and Anticancer Activities

Authors

  • Mochamad Rizki Budiman Graduate School of Biomedical Sciences Master Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; Departement of Cellular and Molecular Biology, Faculty of Medicine, Universitas Pasundan, Bandung, Indonesia https://orcid.org/0000-0001-9416-5356
  • Hesti Lina Wiraswati Graduate School of Biomedical Sciences Master Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; Departement of Biomedical Sciences, Division of Parasitology, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia https://orcid.org/0000-0003-2462-6633
  • Andri Rezano Graduate School of Biomedical Sciences Master Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; Department of Biomedical Sciences, Division of Cell Biology, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia https://orcid.org/0000-0003-2550-8794

DOI:

https://doi.org/10.3889/oamjms.2021.6784

Keywords:

Anthocyanins, Antioxidants, Antimutagenicity, Flavonoids, Functional compounds

Abstract

BACKGROUND: Purple sweet potato (PSP; Ipomoea batatas (L.) lam.) is a perennial plant from the morning glory family Convolvulaceae. This plant contains many functional compounds and a high concentration of anthocyanins and phenols, in contrast to other sweet potato plants of different colors. Both in vitro and in vivo studies have shown that parts of PSP have interesting functions in the setting of cancer.

AIM: This article is a collective review of the potential properties of PSP in cancer, with an emphasis on its effects in breast, bladder, colorectal, liver, gastric, and cervical cancers.METHODS: Major English research databases, including PubMed, Web of Science, Scopus, and Google Scholar, were searched for studies evaluating the activity of PSP against cancer published ended in Mei 2020.

RESULTS: The search yielded 72 articles relevant to this topic. Of note, PSP phytochemicals such anthocyanins and caffeoylquinic acid derivatives act as an antioxidant that scavenges free radicals and regulates the Keap1-Nrf2 signaling pathway, acts as an antimutagenic agent, and has anti-inflammatory activity by inhibiting activation of mitogen-activated protein kinases and the NF-κB pathway as a Chemo-preventive mechanism. Furthermore, PSP can promote apoptosis, cell cycle arrest, inhibit proliferation, cell growth inhibition, and inhibit cancer progression that actions collectively sum as anticancer activity in many cancer cells. The primary target-signaling pathway that is interfered by PSP is the phosphatidylinositol-3-kinase/protein kinase B pathway, which is a very common mutated pathway in cancer cells that regulates many physiologic processes inside the cells.

CONCLUSION: As a promising medicinal plant that may serve as a Chemo-preventive and anticancer agent, further research on PSP is required to determine its clinical uses and potential as a food supplement.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2021;71:209-49. https://doi.org/10.3322/caac.21660 PMid:33538338 DOI: https://doi.org/10.3322/caac.21660

Bray F, Ferlay J, Soerjomataram I. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-4. https://doi.org/10.3322/caac.21492 PMid:30207593 DOI: https://doi.org/10.3322/caac.21492

Forouzanfar MH, Afshin A, Alexander LT, Anderson HS, Bachman VF, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioral, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1659. https://doi.org/10.1038/sj.bdj.2015.751 PMid:26364544 DOI: https://doi.org/10.1038/sj.bdj.2015.751

Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med. 2019;8(5):1958-5. https://doi.org/10.1002/cam4.2108 PMid:30945475 DOI: https://doi.org/10.1002/cam4.2108

Yin SY, Wei WC, Jian FY, Yang NS. Therapeutic applications of herbal medicines for cancer patients. Evid Based Complement Alternat Med. 2013;2013:302426. PMid:23956768 DOI: https://doi.org/10.1155/2013/302426

Kapinova A, Kubatka P, Golubnitschaja O, Kello M, Zubor P, Solar P, et al. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med. 2018;23(1):36. https://doi.org/10.1186/s12199-018-0724-1 PMid:30092754 DOI: https://doi.org/10.1186/s12199-018-0724-1

Dako E, Retta N, Desse G. Comparison of three sweet potatoes (Ipomoea batatas (L.) Lam) varieties of nutritional and anti-nutritional factors. Global J Sci Front Research. 2016;16(4):1-16.

Islam S. Sweet potato (Ipomoea batatas L.) leaf: Its potential effect on human health and nutrition. J. Food Sci. 2006;71:13-1. https://doi.org/10.1111/j.1365-2621.2006.tb08912.x DOI: https://doi.org/10.1111/j.1365-2621.2006.tb08912.x

Bovell-Benjamin AC. Sweet potato: A review of its past, present, and future role in human nutrition. Adv Food Nutr Res. 2007;52:1-59. https://doi.org/10.1016/s1043-4526(06)52001-7 PMid:17425943 DOI: https://doi.org/10.1016/S1043-4526(06)52001-7

Rose IM, Vasanthakaalam H. Comparison of the nutrient composition of four sweet potato varieties cultivated in Rwanda. Am J Food Nutr. 2011;1:34-8. https://doi.org/10.5251/ajfn.2011.1.1.34.38 DOI: https://doi.org/10.5251/ajfn.2011.1.1.34.38

Ahn YO, Kim SH, Kim CY, Lee JS, Kwak SS, Lee HS, et al. Exogenous sucrose utilization and starch biosynthesis among sweet potato cultivars. Carbohydr Res. 2010;345(1):55-0. https://doi.org/10.1016/j.carres.2009.08.025 PMid:19896120 DOI: https://doi.org/10.1016/j.carres.2009.08.025

Mussoline WA, Wilkie AC. Feed and fuel: The dual-purpose advantage of an industrial sweet potato. J Sci Food Agric. 2017;97(5):1567-5. https://doi.org/10.1002/jsfa.7902 PMid:27405855 DOI: https://doi.org/10.1002/jsfa.7902

Wang S, Nie S, Zhu F. Chemical constituents and health effects of sweet potato. Food Res Int. 2016;89(1):90-6. https://doi.org/10.1016/j.foodres.2016.08.032 PMid:28460992 DOI: https://doi.org/10.1016/j.foodres.2016.08.032

Wang A, Li R, Ren L, Gao X, Zhang Y, Ma Z, et al. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chem. 2018;260:124. https://doi.org/10.1016/j.foodchem.2018.03.125 PMid:29699652 DOI: https://doi.org/10.1016/j.foodchem.2018.03.125

Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colors. Food Chem. 2007;103(3):829-8. https://doi.org/10.1016/j.foodchem.2006.09.033 DOI: https://doi.org/10.1016/j.foodchem.2006.09.033

Park SY, Lee SY, Yang JW, Lee JS, Oh SD, Oh S, et al. Comparative analysis of phytochemicals and polar metabolites from colored sweet potato (Ipomoea batatas L.) tubers. Food Sci Biotechnol. 2016;25(1):283-1. https://doi.org/10.1007/s10068-016-0041-7 PMid:30263269 DOI: https://doi.org/10.1007/s10068-016-0041-7

Dincer C, Karaoglan M, Erden F, Tetik N, Topuz A, Ozdemir F. Effects of baking and boiling on the nutritional and antioxidant properties of sweet potato [Ipomoea batatas (L.) Lam.] cultivars. Plant Foods Hum Nutr. 2011;66(4):341-7. https://doi.org/10.1007/s11130-011-0262-0 PMid:22101780 DOI: https://doi.org/10.1007/s11130-011-0262-0

Laurie SM, Faber M, Calitz FJ, Moelich EI, Muller N, Labuschagne MT. The use of sensory attributes, sugar content, instrumental data, and consumer acceptability in selection of sweet potato varieties. J Sci Food Agric. 2013;93(7):1610-9. https://doi.org/10.1002/jsfa.5932 PMid:23132727 DOI: https://doi.org/10.1002/jsfa.5932

Zhu F, Wang S. Physicochemical properties, molecular structure, and uses of sweet potato starch. Trends Food Sci Technol. 2014;36(2):68-8. DOI: https://doi.org/10.1016/j.tifs.2014.01.008

Mei X, Mu TH, Han JJ. Composition and physicochemical properties of dietary fiber extracted from residues of 10 varieties of sweet potato by a sieving method. J Agric Food Chem. 2010;58(12):7305. https://doi.org/10.1021/jf101021s PMid:20509611 DOI: https://doi.org/10.1021/jf101021s

Chen YY, Lai MH, Hung HY, Liu JF. Sweet potato [Ipomoea batatas (L.) Lam.“Tainong 57”] starch improves insulin sensitivity in high-fructose diet-fed rats by ameliorating adipocytokine levels, pro-inflammatory status, and insulin signaling. J Nutr Sci Vitaminol. 2013;59(4):272. https://doi.org/10.3177/jnsv.59.272 PMid:24064727 DOI: https://doi.org/10.3177/jnsv.59.272

Kusano S, Tamasu S, Nakatsugawa S. Effects of the whiteskinned sweet potato (Ipomoea batata L.) on the expression of adipocytokine in adipose tissue of genetic type 2 diabetic mice. Food Sci Technol Res. 2005;11:369-2. https://doi.org/10.3136/fstr.11.369 DOI: https://doi.org/10.3136/fstr.11.369

Ludvik B, Hanefeld M, Pacini G. Improved metabolic control by Ipomoea batatas (Caiapo) is associated with increased adiponectin and decreased fibrinogen levels in type 2 diabetic subjects. Diabetes Obes Metab. 2008;10(7):586-2. https://doi.org/10.1111/j.1463-1326.2007.00752.x PMid:17645559 DOI: https://doi.org/10.1111/j.1463-1326.2007.00752.x

Arogundade LA, Mu TH. Influence of oxidative browning inhibitors and isolation techniques on sweet potato protein recovery and composition. Food Chem. 2012;134(3):1374-4. https://doi.org/10.1016/j.foodchem.2012.03.035 DOI: https://doi.org/10.1016/j.foodchem.2012.03.035

Deng F, Mu T, Zhang M, Abegunde OK. Composition, structure, and physicochemical properties of sweet potato starches isolated by sour liquid processing and centrifugation. Starch Stärke. 2013;65(1-2):162-1. https://doi.org/10.1002/star.201200106 DOI: https://doi.org/10.1002/star.201200106

La Bonte DR, Picha DH, Johnson HA. Carbohydrate-related changes in sweet potato storage roots during development. J Am Soc Hortic Sci. 2000;125:200-4. https://doi.org/10.21273/jashs.125.2.200 DOI: https://doi.org/10.21273/JASHS.125.2.200

Li H, Wang X, Li Y, Li P, Wang H. Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem. 2009;112:454. https://doi.org/10.1016/j.foodchem.2008.05.111 DOI: https://doi.org/10.1016/j.foodchem.2008.05.111

Zhao JG, Yan QQ, Xue RY, Zhang J, Zhang YQ. Isolation and identification of colorless caffeoyl compounds in purple sweet potato by HPLC-DAD–ESI/MS and their antioxidant activities. Food Chem. 2014;161:22-6. https://doi.org/10.1016/j.foodchem.2014.03.079 PMid:24837917 DOI: https://doi.org/10.1016/j.foodchem.2014.03.079

Harrison HF, Mitchell TR, Peterson JK, Wechter WP, Majetich GF, Snook ME, et al. Contents of caffeoylquinic acid compounds in the storage roots of sixteen sweet potato genotypes and their potential biological activity. J Am Soc Hortic Sci. 2008;133:492. https://doi.org/10.21273/jashs.133.4.492 DOI: https://doi.org/10.21273/JASHS.133.4.492

Robbins R.J. Phenolic acids in foods: An overview of analytical methodology. J Agric Food Chem. 2003;51(10):2866-7. https://doi.org/10.1021/jf026182t PMid:12720366 DOI: https://doi.org/10.1021/jf026182t

Oki T, Masuda M, Furuta S, Nishiba Y, Terahara N, Suda I. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J Food Sci. 2002;67(5):1752-6. https://doi.org/10.1111/j.1365-2621.2002.tb08718.x DOI: https://doi.org/10.1111/j.1365-2621.2002.tb08718.x

Rumbaoa RG, Cornago DF, Geronimo IM. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chem. 2009;113(4):1133-8. DOI: https://doi.org/10.1016/j.foodchem.2008.08.088

Wu T, Tsai C, Hwang Y, Chiu T. Effect of antioxidant activity and functional properties of chingshey purple sweet potato fermented milk by Lactobacillus acidophilus, L. Delbrueckii subsp. Lactis, and L. Gasseri strains. J Food Sci. 2012;77(1):2-8. https://doi.org/10.1111/j.1750-3841.2011.02507.x PMid:22182227 DOI: https://doi.org/10.1111/j.1750-3841.2011.02507.x

Park EJ, Pezzuto JM. Flavonoids in cancer prevention. Anticancer Agents Med Chem. 2012;12(8):836-1. PMid:22292763 DOI: https://doi.org/10.2174/187152012802650075

Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal. 2013;2013:162750. PMid:24470791 DOI: https://doi.org/10.1155/2013/162750

Harborne JB, Grayer RJ. The anthocyanins. In: The Flavonoids. Berlin, Germany: Springer; 1988. p. 1-20. DOI: https://doi.org/10.1007/978-1-4899-2913-6_1

Hou DX, Fujii M, Terahara N, Yoshimoto M. Molecular mechanisms behind the chemopreventive effects of anthocyanidins. Biomed Res Int. 2004;2004(5):321-5. https://doi.org/10.1155/s1110724304403040 PMid:15577196 DOI: https://doi.org/10.1155/S1110724304403040

Wang H, Fan W, Li H, Yang J, Huang J, Zhang P, et al. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins functions against abiotic stresses. PLoS One. 2013;8:78484. https://doi.org/10.1371/journal.pone.0078484 PMid:24223813 DOI: https://doi.org/10.1371/journal.pone.0078484

Lee SL, Chin TY, Tu SC, Wang YJ, Hsu YT, Kao MC, et al. Purple sweet potato leaf extract induces apoptosis and reduces inflammatory adipokine expression in 3T3-L1 differentiated adipocytes. Evid Based Complement Alternat Med. 2015. https://doi.org/10.1155/2015/126302 PMid:26170870 DOI: https://doi.org/10.1155/2015/126302

Sayuti K, Yenrina R. Natural and Synthetic Antioxidants. Padang: Universitas Andalas; 2015.

Wang X, Yang DY, Yang LQ, Zhao WZ, Cai LY, Shi HP, et al. Anthocyanin consumption and risk of colorectal cancer: A meta-analysis of observational studies. J Am Coll Nutr. 2019;38(5):470-7. PMid:30589398 DOI: https://doi.org/10.1080/07315724.2018.1531084

Lin B, Gong C, Song H, Cui Y. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol. 2017;174(11):1226-3. PMid:27646173 DOI: https://doi.org/10.1111/bph.13627

Shih PH, Yeh CT, Yen GC. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J Agric Food Chem. 2007;55(23):9427-5. https://doi.org/10.1021/jf071933i PMid:17935293 DOI: https://doi.org/10.1021/jf071933i

Thoppil RJ, Bhatia D, Barnes KF, Haznagy-Radnai E, Hohmann J, Darvesh AS, et al. Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma. Curr Cancer Drug Targets. 2021;12(9):1244-7. https://doi.org/10.2174/156800912803987968 PMid:22873220 DOI: https://doi.org/10.2174/156800912803987968

Yoshimoto M, Okuno S, Yoshinaga M, Ishiguro K, Yamakawa O. Antimutagenicity of mono-, di-, and tricaffeoylquinic acid derivatives isolated from sweetpotato (Ipomoea batatas L.) Leaf. Biosci Biotechnol Biochem. 2002;66(11):2336-1. https://doi.org/10.1271/bbb.66.2336 PMid:12506969 DOI: https://doi.org/10.1271/bbb.66.2336

Konczak-Islam I, Yoshimoto M, Hou DX, Terahara N, Yamakawa O. Potential chemopreventive properties of anthocyanin-rich aqueous extracts from in vitro produced tissue of sweetpotato (Ipomoea batatas L.). J Agric Food Chem. 2003;51(20):5916-2. https://doi.org/10.1021/jf030066o PMid:13129295 DOI: https://doi.org/10.1021/jf030066o

Islam I, Shaikh AU, Shahidul IM. Antioxidative and antimutagenic potentials of phytochemicals from Ipomoea batatas (L.) Lam. Int J Cancer Res. 2009;5(3):83-4. https://doi.org/10.3923/ijcr.2009.83.94 DOI: https://doi.org/10.3923/ijcr.2009.83.94

Zhao Y, Xue Y, Oberley TD, Kiningham KK, Lin SM, Yen HC, et al. Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res. 2001;61(16):6082-8. PMid:11507057

Hou DX, Kai K, Li JJ, Lin S, Terahara N, Wakamatsu M, et al. Anthocyanidins inhibit activator protein 1 activity and cell transformation: Structure-activity relationship and molecular mechanisms. Carcinogenesis. 2004;25(1):29-6. https://doi.org/10.1093/carcin/bgg184 PMid:14514663 DOI: https://doi.org/10.1093/carcin/bgg184

Wooster R, Weber BL. Breast and ovarian cancer. N Engl J Med. 2003;348:2339-7. DOI: https://doi.org/10.1056/NEJMra012284

Vishnu VR, Renjith RS, Mukherjee A, Anil SR, Sreekumar J, Jyothi AN. Comparative study on the chemical structure and in vitro antiproliferative activity of anthocyanins in purple root tubers and leaves of sweet potato (Ipomoea batatas). Agric Food Chem. 2019;67(9):2467-5. https://doi.org/10.1021/acs.jafc.8b05473 PMid:30741542 DOI: https://doi.org/10.1021/acs.jafc.8b05473

Rezano A, Sariwidyantry RG, Nurfazriah LR, Edwinanto L, Istiqomah AA, Gunawan T, et al. Evaluation of cell viability suppression of purple sweet potato extract against MCF-7 cell line. Res J Chem Environ. 2020;24(3):74-9.

Lee JH, Lee JY, Park JH, Jung HS, Kim JS, Kang SS, et al. Immunoregulatory activity by daucosterol, a β-sitosterol glycoside, induces protective Th1 immune response against disseminated candidiasis in mice. Vaccine. 2007;25(19):3834. https://doi.org/10.1016/j.vaccine.2007.01.108 PMid:17335944 DOI: https://doi.org/10.1016/j.vaccine.2007.01.108

Sultana N, Afolayan AJ. A novel daucosterol derivative and antibacterial activity of compounds from arctotis arctotoides. Nat Prod Res. 2007;21(10):889-6. https://doi.org/10.1080/14786410601129606 PMid:17680499 DOI: https://doi.org/10.1080/14786410601129606

Wang GQ, Gu JF, Gao YC, Dai YJ. Daucosterol inhibits colon cancer growth by inducing apoptosis, inhibiting cell migration and invasion and, targeting caspase signaling pathway. Bangladesh J Pharmacol. 2016;11:395-1. https://doi.org/10.3329/bjp.v11i2.25754 DOI: https://doi.org/10.3329/bjp.v11i2.25754

Xu H, Li Y, Han B, Li Z, Wang B, Jiang P, et al. Anti-breastcancer activity exerted by β-sitosterol-d-glucoside from sweet potato via upregulation of MicroRNA-10a and the PI3K-Akt signaling pathway. J Agric Food Chem. 2018;66(37):9704-8. https://doi.org/10.1021/acs.jafc.8b03305 PMid:30160115 DOI: https://doi.org/10.1021/acs.jafc.8b03305

Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4(12):988-4. https://doi.org/10.1038/nrd1902 PMid:16341064 DOI: https://doi.org/10.1038/nrd1902

Moon DO, Kim MO, Choi YH, Kim GY. β-sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Lett. 2008;264(2):181-1. https://doi.org/10.1016/j.canlet.2008.01.032 PMid:18314257 DOI: https://doi.org/10.1016/j.canlet.2008.01.032

Sugata M, Lin CY, Shih YC. Anti-inflammatory and anticancer activities of Taiwanese purple-fleshed sweet potatoes (Ipomoea batatas L. Lam) extracts. Biomed Res Int. 2015;2015:768093. https://doi.org/10.1155/2015/768093 DOI: https://doi.org/10.1155/2015/768093

Han B, Jiang P, Liu W, Xu H, Li Y, Li Z, et al. Role of daucosterol linoleate on breast cancer: Studies on apoptosis and metastasis. J Agric Food Chem. 2018;66(24):6031-1. https://doi.org/10.1021/acs.jafc.8b01387 PMid:29878766 DOI: https://doi.org/10.1021/acs.jafc.8b01387

Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74-8. https://doi.org/10.3322/canjclin.55.2.74 PMid:15761078 DOI: https://doi.org/10.3322/canjclin.55.2.74

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71-96. PMid:18287387 DOI: https://doi.org/10.3322/CA.2007.0010

Umbas R, Safriadi F, Mochtar CA, Djatisoesanto W, Hamid AR. Urologic cancer in Indonesia. Jpn J Clin Oncol. 2015;45(8):708-2. https://doi.org/10.1093/jjco/hyv066 PMid:26085688 DOI: https://doi.org/10.1093/jjco/hyv066

Li WL, Yu HY, Zhang XJ, Ke M, Hong T. Purple sweet potato anthocyanin exerts antitumor effect in bladder cancer. Oncol Rep. 2018;40(1):73-2. https://doi.org/10.3892/or.2018.6421 PMid:29749527 DOI: https://doi.org/10.3892/or.2018.6421

Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell. 2003;4(4):257-2. https://doi.org/10.1016/s1535-6108(03)00248-4 PMid:14585353 DOI: https://doi.org/10.1016/S1535-6108(03)00248-4

Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signaling control tumor cell growth. Nature. 2006;441(7092):424-30. PMid:16724053 DOI: https://doi.org/10.1038/nature04869

Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627-4. https://doi.org/10.1038/nrd2926 PMid:19644473 DOI: https://doi.org/10.1038/nrd2926

Li WL, Ji GH, Zhang XZ, Yu HY. The influence and mechanisms of purple sweet potato anthocyanins on the growth of bladder cancer BIU87 cell. Zhonghua Yi Xue Za Zhi. 2018;98(6):457-9. PMid:29429260

Ryan-Harshman M, Aldoori W. Diet and colorectal cancer: Review of the evidence. Can Fam Physician. 2007;53(11):1913-30. PMid:18000268

Lim S, Xu J, Kim J, Chen TY, Su X, Standard J, et al. Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Mol Nutr Food Res. 2013;57(11):1908-7. https://doi.org/10.1002/mnfr.201300040 PMid:23784800 DOI: https://doi.org/10.1002/mnfr.201300040

Asadi K, Ferguson LR, Philpott M, Karunasinghe N. Cancerpreventive properties of an anthocyanin-enriched sweet potato in the APC(MIN) mouse model. J Cancer Prev. 2017;22(3):135-6. https://doi.org/10.15430/jcp.2017.22.3.135 PMid:29018778 DOI: https://doi.org/10.15430/JCP.2017.22.3.135

Hagiwara A, Yoshino H, Ichihara T, Kawabe M, Tamano S, Aoki H, et al. Prevention by natural food anthocyanins, purple sweet potato color and, red cabbage color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in rats initiated with 1,2-dimethylhydrazine. J Toxicol Sci. 2002;27(1):57-8. https://doi.org/10.2131/jts.27.57 PMid:11915369 DOI: https://doi.org/10.2131/jts.27.57

Wu Q, Qu H, Jia J, Kuang C, Wen Y, Yan H, et al. Characterization, antioxidant and antitumor activities of polysaccharides from purple sweet potato. Carbohydr Polym. 2015;132:31-40. https://doi.org/10.1016/j.carbpol.2015.06.045 PMid:26256321 DOI: https://doi.org/10.1016/j.carbpol.2015.06.045

Gelband H, Chen CJ, Chen W. Liver cancer. In: Gelband H, Jha P, Sankaranarayanan R, Horton S, editors. Cancer: Disease Control Priorities. 3rd ed. United States: The International Bank for Reconstruction and Development, The World Bank; 2015. https://doi.org/10.1596/978-1-4648-0349-9_ch8 DOI: https://doi.org/10.1596/978-1-4648-0349-9_ch8

El-Serag HB, Rudolph KL. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557-6. https://doi.org/10.1053/j.gastro.2007.04.061 PMid:17570226 DOI: https://doi.org/10.1053/j.gastro.2007.04.061

Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5(12):1749-8. https://doi.org/10.1200/jco.2018.36.15_suppl.1568 PMid:31560378 DOI: https://doi.org/10.1200/JCO.2018.36.15_suppl.1568

Tang A, Hallouch O, Chernyak V, Kamaya A, Sirlin CB. Epidemiology of hepatocellular carcinoma: Target population for surveillance and diagnosis. Abdom Radiol. 2018;43(1):13-5. https://doi.org/10.1007/s00261-017-1209-1 PMid:28647765 DOI: https://doi.org/10.1007/s00261-017-1209-1

Lee JH, Woo KS, Lee HU, Nam SS, Lee BW, Lee YY, et al. Intracellular reactive oxygen species (ROS) removal and cytoprotection effects of sweet potatoes of various flesh colors and their polyphenols, including anthocyanin. Prev Nutr Food Sci. 2019;24(3):293-8. https://doi.org/10.3746/pnf.2019.24.3.293 PMid:31608254 DOI: https://doi.org/10.3746/pnf.2019.24.3.293

Lazze MC, Pizzala R, Savio M, Stivala LA, Prosperi E, Bianchi L. Anthocyanins protect against DNA damage induced by tertbutyl-hydroperoxide in rat smooth muscle and hepatoma cells. Mutat Res Toxicol Environ Mutagen. 2003;535(1):103-5. https://doi.org/10.1016/s1383-5718(02)00285-1 PMid:12547288 DOI: https://doi.org/10.1016/S1383-5718(02)00285-1

Sun Y, Pan Z, Yang C, Jia Z, Guo X. Comparative assessment of phenolic profiles, cellular antioxidant and antiproliferative activities in ten varieties of sweet potato (Ipomoea Batatas) storage roots. Molecules. 2019;24(24):4476. https://doi.org/10.3390/molecules24244476 PMid:31817653 DOI: https://doi.org/10.3390/molecules24244476

Zhao J, Ruan H, Gao QP, Li MY, Tao YQ, Zheng Y. Anti-tumor activity of components isolated from purple sweet potato polysaccharides. J Zhejiang Univ Med Sci. 2011;40(4):365-3. PMid:21845748

Huang G, Huang H. The derivatization and antitumor mechanisms of polysaccharides. Future Med Chem. 2017;9(16):1931-8. PMid:29076350 DOI: https://doi.org/10.4155/fmc-2017-0132

Chen Y, Liu J, Cao C, Bian G, Jiang J. Anti-Tumor activity of purple sweet potato juice and its apoptosis-inducing mechanism in HepG2 cells. Food Sci. 2013;1:237.

Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12-9. https://doi.org/10.1002/(sici)1096-9896(199909)189:1<12:aid-path431>3.0.co;2-f PMid:10451482 DOI: https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Meeting, World Health Organization and International Agency for Research on Cancer. Human Papillomaviruses. Geneva: World Health Organization; 2007. p. 90. https://doi.org/10.1002/food.19890331018 DOI: https://doi.org/10.1002/food.19890331018

Arends, M J, Buckley CH, Wells M. Aetiology, pathogenesis, and pathology of cervical neoplasia. J Clin Pathol. 1998;51(2):96-3. https://doi.org/10.1136/jcp.51.2.96 PMid:9602680 DOI: https://doi.org/10.1136/jcp.51.2.96

Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1-17. PMid:12525422 DOI: https://doi.org/10.1128/CMR.16.1.1-17.2003

Miller D, Puricelli MD, Stack MS. Virology and molecular pathogenesis of HPV (human papillomavirus) associated oropharyngeal squamous cell carcinoma. Biochem J. 2012;443(2):339-3. https://doi.org/10.1042/bj20112017 PMid:22452816 DOI: https://doi.org/10.1042/BJ20112017

Tobing MD, Sahiratmadja E, Dinda M, Hernowo BS, Susanto H. Human papillomavirus genotypes profile in cervical cancer patients at dr. Hasan Sadikin general hospital, Bandung, Indonesia. Asian Pac J Cancer Prev. 2014;15(14):5781-5. https://doi.org/10.7314/apjcp.2014.15.14.5781 PMid:25081701 DOI: https://doi.org/10.7314/APJCP.2014.15.14.5781

De B, Rhome R, Jairam V, Özbek U, Holcombe RF, Buckstein M, et al. Gastric adenocarcinoma in young adult patients: Patterns of care and survival in the united states. Gastric Cancer. 2018;21(6):889-9. https://doi.org/10.1007/s10120-018-0826-x PMid:29691758 DOI: https://doi.org/10.1007/s10120-018-0826-x

Merchant SJ, Kim J, Choi AH. A rising trend in the incidence of advanced gastric cancer in young Hispanic men. Gastric Cancer. 2017;20(2):226-4. https://doi.org/10.1007/s10120-016-0603-7 PMid:26924751 DOI: https://doi.org/10.1007/s10120-016-0603-7

Downloads

Published

2021-08-30

How to Cite

1.
Rizki Budiman M, Lina Wiraswati H, Rezano A. Purple Sweet Potato Phytochemicals: Potential Chemo-preventive and Anticancer Activities. Open Access Maced J Med Sci [Internet]. 2021 Aug. 30 [cited 2024 Nov. 13];9(F):288-9. Available from: https://oamjms.eu/index.php/mjms/article/view/6784

Issue

Section

Narrative Review Article

Categories