Amelioration of Cisplatin-induced Liver Injury by Extract Ethanol of Pometia pinnata
DOI:
https://doi.org/10.3889/oamjms.2021.6785Keywords:
Cisplatin, Pometia pinnata, LiverAbstract
BACKGROUND: Cisplatin use in clinical practice has been associated with an increase in aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, and lactate dehydrogenase (LDH).
AIM: The aim of this study is to determine the hepatoprotective activity of extract ethanol Pometia pinnata on rats induced Cisplatin.
MATERIALS AND METHODS: Thirty rats were separated into six groups (five rats). Group I was received only carboxy methyl cellulose. Group II was received a 7 mg/kgbw Cisplatin injection on day 3. Group III-VI were extract groups (Vitamin C 1%, 100 mg/kgbb, 200 mg/kgbb, and 400 mg/kgbb) administered orally from day 1 to 7, followed by Cisplatin injection on day 3. On day 8, rats were injected with 1% ketamine, open the chest and draw blood directly from the heart and centrifugated 5000 RPM (10–15 min), take the supernatant layer for analysis AST, ALT, total protein, and LDH levels.
RESULTS: The effect of extract ethanol of P. pinnata on liver injury biochemical markers AST, ALT, LDH, and total protein. Group negative had a significant increase (p < 0.05) in comparison to the normal that did not receive extract or Cisplatin. Meanwhile, there was a drop in biochemical parameters in the group given the extract in groups dose 100, 200, 400 mg/kgbw. Group VI of biochemical parameters statistically there is no significant different with group normal group (p > 0.05) that showing P. pinnata extract has hepatoprotective activity.
CONCLUSION: In summary, extract ethanol of P. pinnata has hepatoprotective effect by reducing the level of AST, ALT, total protein, and LDH levels.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Breglio AM, Rusheen AE, Shide ED, Fernandez KA, Spielbauer KK, McLachlin KM, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun. 2017;8(1):1654. https://doi.org/10.1038/s41467-017-01837-1 PMid:29162831 DOI: https://doi.org/10.1038/s41467-017-01837-1
Zhang Y, Chen L, Hu GQ, Zhang N, Zhu XD, Yang KY, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma. N Engl J Med. 2019;381(12):1124-35. PMid:31150573
Makovec T. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 2019;53(2):148-58. https://doi.org/10.2478/raon-2019-0018 PMid:30956230 DOI: https://doi.org/10.2478/raon-2019-0018
Un H, Ugan RA, Kose D, Bayir Y, Cadirci E, Selli J, et al. A novel effect of aprepitant: Protection for cisplatin-induced nephrotoxicity and hepatotoxicity. Eur J Pharmacol. 2020;880:173168. https://doi.org/10.1016/j.ejphar.2020.173168 PMid:32423870 DOI: https://doi.org/10.1016/j.ejphar.2020.173168
Khan MW, Zhao P, Khan A, Raza F, Raza SM, Sarfraz M, et al. Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int J Nanomed. 2019;14:3753-71. https://doi.org/10.2147/ijn.s196651 PMid:31239661 DOI: https://doi.org/10.2147/IJN.S196651
Naidi SN, Khan F, Tan AL, Harunsani MH, Kim YM, Khan MM. Photoantioxidant and antibiofilm studies of green synthesized Sn-doped CeO2 nanoparticles using aqueous leaf extracts of Pometia pinnata. N J Chem. 2021;45(17):7816-29. https://doi.org/10.1039/d1nj00416f DOI: https://doi.org/10.1039/D1NJ00416F
Irawan C, Sulistiawaty L, Rochaeni H, Lestari PS. Evaluation of DPPH free radical scavenging activity of Pometia pinnata from Indonesia. Pharma Innov. 2017;6(8):403-6.
Rohmawati D, Sutoyo S. Steroid isolated from the dichlorometane extract of matoa’s stem bark (Pometia pinnata) and toxicity tests against Artemia salina Leach. In: Proceedings of the Seminar Nasional Kimia-National Seminar on Chemistry. Vol. 2. Netherlands: Atlantis Press; 2018. p. 187. https://doi.org/10.2991/snk-18.2018.25 DOI: https://doi.org/10.2991/snk-18.2018.25
Prihanti GS, Katjasungkana RM, Novitasari BR, Amalia SR, Nurfajriana A, Agustini SM, et al. Antidiabetic potential of matoa bark extract (Pometia pinnata) in alloxan-induced diabetic male rat strain wistar (Rattus norvegicus). Syst Rev Pharm. 2020;11(8):88-97.
Nugraha SE, Yuandani ES, Syahputra RA. Investigation of phytochemical constituents and cardioprotective activity of ethanol extract of beetroot (Beta vulgaris. L) on doxorubicin induced toxicity in rat. Rasayan J Chem. 2020;13(2):973-8. https://doi.org/10.31788/rjc.2020.1325601 DOI: https://doi.org/10.31788/RJC.2020.1325601
Syahputra RA, Harahap U, Dalimunthe A, Nasution P, Haro G, Widodo DH, et al. In silico toxicity prediction of bioactive compounds of Vernonia amygdalina Delile. and digoxin. Rasayan J Chem. 2020;13(2):1220-4. https://doi.org/10.31788/rjc.2020.1325638 DOI: https://doi.org/10.31788/RJC.2020.1325638
Bazmandegan G, Amirteimoury M, Kaeidi A, Shamsizadeh A, Khademalhosseini M, Nematollahi MH, et al. Sumatriptan ameliorates renal injury induced by cisplatin in mice. Iran J Basic Med Sci. 2019;22(5):563-7. PMid:31217938
Sioud F, Toumia IB, Lahmer A, Khlifi R, Dhaouefi Z, Maatouk M, et al. Methanolic extract of Ephedra alata ameliorates cisplatin-induced nephrotoxicity and hepatotoxicity through reducing oxidative stress and genotoxicity. Environ Sci Pollut Res. 2020;27(11):12792-801. https://doi.org/10.1007/s11356-020-07904-3 PMid:32008195 DOI: https://doi.org/10.1007/s11356-020-07904-3
Niu C, Ma M, Han X, Wang Z, Li H. Hyperin protects against cisplatin-induced liver injury in mice. Acta Cir Bras. 2017;32(8):633-40. https://doi.org/10.1590/s0102-865020170080000005 PMid:28902939 DOI: https://doi.org/10.1590/s0102-865020170080000005
Ekinci̇-Akdemi̇r FN, Bi̇ngöl Ç, Yıldırım S, Kandemi̇r FM, Küçükler S, Sağlam YS. The investigation of the effect of fraxin on hepatotoxicity induced by cisplatin in rats. Iran J Basic Med Sci. 2020;23(11):1382-7. PMid:33235694
El-Gizawy MM, Hosny EN, Mourad HH, Abd-El Razik AN. Curcumin nanoparticles ameliorate hepatotoxicity and nephrotoxicity induced by cisplatin in rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(10):1941-53. https://doi.org/10.1007/s00210-020-01888-0 PMid:32447466 DOI: https://doi.org/10.1007/s00210-020-01888-0
Mohamed HE, Badawy MM. Modulatory effect of zingerone against cisplatin or γ-irradiation induced hepatotoxicity by molecular targeting regulation. Appl Radiat Isot. 2019;1(154):108891. https://doi.org/10.1016/j.apradiso.2019.108891 PMid:31536909 DOI: https://doi.org/10.1016/j.apradiso.2019.108891
Jarsiah P, Nosrati A, Alizadeh A, Hashemi-Soteh SM. Hepatotoxicity and ALT/AST enzymes activities change in therapeutic and toxic doses consumption of acetaminophen in rats. Int Biol Biomed J. 2017;3(3):119-24.
Mansour DF, Saleh DO, Mostafa RE. Genistein ameliorates cyclophosphamide-induced hepatotoxicity by modulation of oxidative stress and inflammatory mediators. Open Access Maced J Med Sci. 2017;5(7):836-43. https://doi.org/10.3889/oamjms.2017.093 PMid:29362606 DOI: https://doi.org/10.3889/oamjms.2017.093
Roh T, De U, Lim SK, Kim MK, Choi SM, Lim DS, et al. Detoxifying effect of pyridoxine on acetaminophen-induced hepatotoxicity via suppressing oxidative stress injury. Food Chem Toxicol. 2018;114:11-22. https://doi.org/10.1016/j.fct.2018.02.017 PMid:29438775 DOI: https://doi.org/10.1016/j.fct.2018.02.017
Goodarzi Z, Karami E, Yousefi S, Dehdashti A, Bandegi AR, Ghanbari A. Hepatoprotective effect of atorvastatin on cadmium chloride induced hepatotoxicity in rats. Life Sci. 2020;254:117770. https://doi.org/10.1016/j.lfs.2020.117770 PMid:32407846 DOI: https://doi.org/10.1016/j.lfs.2020.117770
Omar HA, Mohamed WR, Arab HH, Arafa ES. Tangeretin alleviates cisplatin-induced acute hepatic injury in rats: Targeting MAPKs and apoptosis. PLoS One. 2016;11(3):e0151649. https://doi.org/10.1371/journal.pone.0151649 PMid:27031695 DOI: https://doi.org/10.1371/journal.pone.0151649
Hassan HM, Al-Wahaibi LH, Elmorsy MA, Mahran YF. Suppression of cisplatin-induced hepatic injury in rats through alarmin high-mobility group box-1 pathway by Ganoderma lucidum: Theoretical and experimental study. Drug Des Dev Ther. 2020;14:2335-53. https://doi.org/10.2147/dddt.s249093 PMid:32606602 DOI: https://doi.org/10.2147/DDDT.S249093
Downloads
Published
How to Cite
License
Copyright (c) 2021 Adrian Adrian, Rony Abdi Syahputra, Sukirman Lie, Sony Eka Nugraha (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0