Bronchial Asthma: Genetic Factors Contributing to its Pathogenesis

Authors

  • Inna Krynytska Department of Functional and Laboratory Diagnostics, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine https://orcid.org/0000-0002-0398-8937
  • Mariya Marushchak Department of Functional and Laboratory Diagnostics, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine https://orcid.org/0000-0001-6754-0026
  • Anna Mykolenko Department of Pathological Anatomy, Autopsy course and Forensic pathology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine https://orcid.org/0000-0002-1845-4882
  • Iryna Smachylo Department of Internal Medicine N1, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine https://orcid.org/0000-0003-4323-8628
  • Olha Sopel Department of General Hygiene and Ecology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine https://orcid.org/0000-0003-3807-1317
  • Svitlana Kucher Department of Internal Medicine Propedeutics and Phthisiology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine https://orcid.org/0000-0003-1026-9567

DOI:

https://doi.org/10.3889/oamjms.2021.6788

Keywords:

Bronchial asthma, Genes, Pathogenesis

Abstract

Researching bronchial asthma (BA)-linked gene polymorphisms can help to clarify heterogeneity of the disease and estimate its severity, which, in turn, will aid in developing an appropriate treatment corresponding to the patient’s unique asthma pathogenesis. The aim of presented review is to analyze the published data on the genetic preconditions of BA and the possible role of different genes polymorphisms in its pathogenesis. We have found that despite the fact that numerous genes are involved in the pathogenesis of BA and their polymorphisms are associated with increased risks for BA, it is important to understand that a combination of factors, both genetic and environmental, triggers BA development and determines its progression. On the other hand, the identification of BA susceptibility genes contributing to asthma pathogenesis and treatment response is the first step toward the development of personalized medicine.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Shine S, Muhamud S, Demelash A. Prevalence and associated factors of bronchial asthma among adult patients in Debre Berhan Referral Hospital, Ethiopia 2018: A cross-sectional study. BMC Res Notes. 2019;12(1):608. http://doi.org/10.1186/s13104-019-4670-9 PMid:31547859 DOI: https://doi.org/10.1186/s13104-019-4670-9

Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;7:246. http://doi.org/10.3389/fped.2019.00246 PMid:31275909 DOI: https://doi.org/10.3389/fped.2019.00246

Selroos O, Kupczyk M, Kuna P, Łacwik P, Bousquet J, Brennan D, et al. National and regional asthma programmes in Europe. Eur Respir Rev. 2015;24(137):474-83. http://doi.org/10.1183/16000617.00008114 PMid:26324809 DOI: https://doi.org/10.1183/16000617.00008114

Nugmanova D, Sokolova L, Feshchenko Y, Iashyna L, Gyrina O, Malynovska K, et al. The prevalence, burden and risk factors associated with bronchial asthma in commonwealth of independent states countries (Ukraine, Kazakhstan and Azerbaijan): Results of the CORE study. BMC Pulm Med. 2018;18(1):110. http://doi.org/10.1186/s12890-018-0676-7 PMid:29976177 DOI: https://doi.org/10.1186/s12890-018-0676-7

Kamyshnyi A, Krynytska I, Matskevych V, Marushchak M, Lushchak O Arterial hypertension as a risk comorbidity associated with COVID-19 pathology. Int J Hypertens. 2020;2020:8019360. http://doi.org/10.1155/2020/8019360 PMid:33489355 DOI: https://doi.org/10.1155/2020/8019360

Lee SC, Son KJ, Han CH, Jung JY, Park SC. Impact of comorbid asthma on severity of coronavirus disease (COVID-19). Sci. Rep. 2020;10(1):21805. PMid:33311519 DOI: https://doi.org/10.1038/s41598-020-77791-8

Velichko VI, Bazhora YaI, Danilchuk GО. Prevalence of comorbid states and modified risk factors in patients with bronchial asthma. Fam Med. 2019;1(81):119-22. http://doi.org/10.30841/2307-5112.1.2019.172330 DOI: https://doi.org/10.30841/2307-5112.1.2019.172330

Volosovets OP, Bolbot YK, Kryvopustov SP, Mozyrska OV, Kryvopustova MV, Prokhorova MP, et al. Bronchial asthma in children of Ukraine: Medical and environmental parallels of morbidity and prevalence. Med Perspect. 2020;25(3):184-91. https://doi.org/10.26641/2307-0404.2020.3.214861 DOI: https://doi.org/10.26641/2307-0404.2020.3.214861

Zhu Y, Yan X, Zhai C, Yang L, Li M. Association between risk of asthma and gene polymorphisms in CHI3L1 and CHIA: A systematic meta-analysis. BMC Pulm Med. 2017;17(1):193. https://doi.org/10.1186/s12890-017-0515-2 PMid:29233108 DOI: https://doi.org/10.1186/s12890-017-0515-2

Ober C, Yao TC. The genetics of asthma and allergic disease: A 21st century perspective. Immunol Rev. 2011;242(1):10-30. https://doi.org/10.1111/j.1600-065X.2011.01029.x PMid:21682736 DOI: https://doi.org/10.1111/j.1600-065X.2011.01029.x

Dayasiri K, Thadchanamoorthy V, Thisanayagam U. Diagnosis and management of allergic rhinitis in children. Int J Human Health Sci. 2021;5(2):159-62. https://doi.org/10.31344/ijhhs.v5i2.253 DOI: https://doi.org/10.31344/ijhhs.v5i2.253

Xu W, Wang Y, Wang C, Ma Y, He S, Kang Y, et al. Increased miR-223-3p in leukocytes positively correlated with IL-17A in plasma of asthmatic patients. Iran J Allergy Asthma Immunol. 2020;19(3):289-96. https://doi.org/10.18502/ijaai.v19i3.3456 PMid:32615662 DOI: https://doi.org/10.18502/ijaai.v19i3.3456

Ober C, Hoffjan S. Asthma genetics 2006: The long and winding road to gene discovery. Genes Immun. 2006;7(2):95-100. https://doi.org/10.1038/sj.gene.6364284 PMid:16395390 DOI: https://doi.org/10.1038/sj.gene.6364284

Uryas’ev OM, Shakhanov AV. Role of nitric oxide synthases polymorphism in the development of comorbidity of bronchial asthma and hypertension. Kazan Med J. 2017;98(2):226-32. DOI: https://doi.org/10.17750/KMJ2017-226

Meyers DA, Bleecker ER, Holloway JW, Holgate ST. Asthma genetics and personalised medicine. Lancet Respir Med. 2014;2(5):405-15. https://doi.org/10.1016/S2213-2600(14)70012-8 PMid:24794577 DOI: https://doi.org/10.1016/S2213-2600(14)70012-8

Huo Y, Zhang HY. Genetic mechanisms of asthma and the implications for drug repositioning. Genes. 2018;9(5):237. https://doi.org/10.3390/genes9050237 PMid:29751569 DOI: https://doi.org/10.3390/genes9050237

Sardaryan I. Phenotypic Features of Bronchial Asthma in Children with Various Allelic Polymorphisms of “Predisposition” Genes (GSTТ1, GSTМ1, ACE, eNOS) [Dissertation]. Saint Petersburg; 2009.

Smirnova A, Gnoevykh V, Portnova J. Genetic aspects of multifactorial chronic bronchial obstructive diseases. Ul’yanovskiy Med Biol J. 2014;1:8-18.

Vercelli D. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol. 2008;8(3):169-82. https://doi.org/10.3390/genes905023710.1038/nri2257 PMid:18301422 DOI: https://doi.org/10.1038/nri2257

Trajkov D, Mirkovska-Stojkovikj J, Arsov T, Petlichkovski A, Strezova A, Efinska-Mladenovska O, et al. Association of cytokine gene polymorphisms with bronchial asthma in Macedonians. Iran J Allergy Asthma Immunol. 2008;7(3):143-56. PMid:18780949

Du J, Han JC, Zhang YJ, Qi GB, Li HB, Zhang YJ, et al. Singlenucleotide polymorphisms of IL-17 gene are associated with asthma susceptibility in an Asian population. Med Sci Monit. 2016;22:780-7. https://doi.org/10.12659/msm.895494 PMid:26954344 DOI: https://doi.org/10.12659/MSM.895494

Berenguer AG, Fernandes AT, Oliveira S, Rodrigues M, Ornelas P, Romeira D, et al. Genetic polymorphisms and asthma: Findings from a case-control study in the Madeira island population. Biol Res. 2014;47(1):40. https://doi.org/10.1186/0717-6287-47-40 PMid:25299150 DOI: https://doi.org/10.1186/0717-6287-47-40

Zhang Y, Zhang J, Tian C, Xiao Y, He C, Li X, et al. The 308 G/A polymorphism in TNF-alpha gene is associated with asthma risk: An update by meta-analysis. J Clin Immunol. 2011;31(2):174-85. PMid:21082225 DOI: https://doi.org/10.1007/s10875-010-9477-3

Ali A, Settin A. Molecular genetic analysis of polymorphisms pertaining to the susceptibility to chronic asthma in Egyptian patients. JOBAZ. 2013;66(4):188-94. https://doi.org/10.1016/j.jobaz.2013.05.001 DOI: https://doi.org/10.1016/j.jobaz.2013.05.001

Lee JC, Espeli M, Anderson CA, Linterman MA, Pocock JM, Williams NJ, et al. Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway. Cell. 2013;155(1):57-69. https://doi.org/10.1016/j.cell.2013.08.034 PMid:24035192 DOI: https://doi.org/10.1016/j.cell.2013.08.034

Barkund S, Shah T, Ambatkar N, Gadgil M, Joshi K. FOXO3a gene polymorphism associated with asthma in Indian population. Mol Biol Int. 2015;2015:638515. https://doi.org/10.1155/2015/638515 PMid:26783460 DOI: https://doi.org/10.1155/2015/638515

Lebedenko A, Shkurat T, Mashkina E, Semernik O, Dreyzina T, Tyurina E. Association of matrix metalloproteinases gene polymorphism with clinical manifestations of bronchial asthma in children. Med Immunol (Russia). 2018;20(6):905-12. DOI: https://doi.org/10.15789/1563-0625-2018-6-905-912

Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta. 2010;1803(1):3-19. https://doi.org/10.1016/j.bbamcr.2009.07.004 PMid:19631700 DOI: https://doi.org/10.1016/j.bbamcr.2009.07.004

Almomani BA, Al-Eitan LN, Al-Sawalha NA, Samrah SM, Al-Quasmi MN. Association of genetic variants with level of asthma control in the Arab population. J Asthma Allergy. 2019;12:35-42. https://doi.org/10.2147/JAA.S186252 PMid:30774389 DOI: https://doi.org/10.2147/JAA.S186252

Hikino K, Kobayashi S, Ota E, Mushiroda T, Kobayashi T. The influence of beta-2 adrenergic receptor gene polymorphisms on albuterol therapy for patients with asthma: Protocol for a systematic review and meta-analysis. JMIR Res Protoc. 2019;8(9):e14759. https://doi.org/10.2196/14759 PMid:31538939 DOI: https://doi.org/10.2196/14759

Wechsler ME, Lehman E, Lazarus SC, Lemanske RF, Boushey HA, Deykin A, et al. beta-Adrenergic receptor polymorphisms and response to salmeterol. Am J Respir Crit Care Med. 2006;173(5):519-26. PMid:16322642 DOI: https://doi.org/10.1164/rccm.200509-1519OC

Marushchak M, Maksiv K, Krynytska I, Stechyshyn I. Glutathione antioxidant system of lymphocytes in the blood of patients in a setting of concomitant chronic obstructive pulmonary disease and arterial hypertension. Pol Merkur Lekarski. 2019;47(281):177-82. PMid:31812971

Jung SK, Ra J, Seo J, Jung HJ, Choi JY, Cho YJ, et al. An Angiotensin I converting enzyme polymorphism is associated with clinical phenotype when using differentiation-syndrome to categorize Korean bronchial asthma patients. Evid Based Complement Alternat Med. 2011;2011:498138. PMid:19525331 DOI: https://doi.org/10.1093/ecam/nep053

Marushchak M, Maksiv K, Krynytska I. ACE gene I/D polymorphism and arterial hypertension in patients with COPD. Pneumologia. 2019;68(3):114-9. DOI: https://doi.org/10.2478/pneum-2019-0039

Ding QL, Sun SF, Cao C, Deng ZC. Association between angiotensin-converting enzyme I/D polymorphism and asthma risk: A meta-analysis involving 11,897 subjects. J Asthma. 2012;49(6):557-62. https://doi.org/10.3109/02770903.2012.685540 PMid:22741763 DOI: https://doi.org/10.3109/02770903.2012.685540

Iskandar H, Bakri S, Mannulusi B, Patellongi IJ. DD genotype of the I/D angiotensin-converting enzyme gene polymorphism is a higher risk for atopic asthma. Int J Med Rev Case Rep. 2020;4(5):11-4. DOI: https://doi.org/10.5455/IJMRCR.atopic-asthma-ace-gene-polymorphism

Pasiyeshvili T, Zheleznyakova N. Clinical and prognostic value of ACE gene polymorphism in patients with asthma and obesity. Crimean Ther J. 2015;1:65-8. DOI: https://doi.org/10.1183/13993003.congress-2016.PA5005

Rechkina О, Gorovenko N, Stryzh V, Rossokha Z, Kyriachenko S, Rudenko S. Models of gen-gene interaction in determining the severity of bronchial asthma in children. Am J Intern Med. 2020;8(4):182-91. DOI: https://doi.org/10.11648/j.ajim.20200804.17

El-Shafei MS, Farres MN, Shahin RY. Evaluation of angiotensin converting enzyme gene polymorphism and susceptibility to bronchial asthma among Egyptians. Allergol Immunopathol (Madr). 2012;40(5):275-80. https://doi.org/10.1016/j.aller.2011.05.010 PMid:21889830 DOI: https://doi.org/10.1016/j.aller.2011.05.010

Bora E, Soylar R, Arıkan-Ayyıldız Z, Uzuner N, Giray-Bozkaya Ö, Erçal D, et al. Plasminogen activator inhibitor-1 and angiotensin converting enzyme gene polymorphisms in Turkish asthmatic children. Allergol Immunopathol (Madr). 2013;41(1):11-6. https://doi.org/10.1016/j.aller.2011.12.003 PMid:22361338 DOI: https://doi.org/10.1016/j.aller.2011.12.003

Alizadeh-Navaei R, Rafiei A, Hedayatizadeh-Omran A, Mohammadzadeh I, Arabi M. Gene susceptibility in Iranian asthmatic patients: A narrative review. Ann Med Health Sci Res. 2014;4(6):837-40. https://doi.org/10.4103/2141-9248.144871 PMid:25506473 DOI: https://doi.org/10.4103/2141-9248.144871

Nakahama H, Obata K, Nakajima T, Nakamura H, Kitada O, Sugita M, et al. Renin-angiotensin system component gene polymorphism in Japanese bronchial asthma patients. J Asthma. 1999;36(2):187-93. https://doi.org/10.3109/02770909909056316 PMid:10227270 DOI: https://doi.org/10.3109/02770909909056316

Martinez FD. CD14, endotoxin, and asthma risk: Actions and interactions. Proc Am Thorac Soc. 2007;4(3):221-5. https://doi.org/10.1513/pats.200702-035AW PMid:17607003 DOI: https://doi.org/10.1513/pats.200702-035AW

Downloads

Published

2021-02-05

How to Cite

1.
Krynytska I, Marushchak M, Mykolenko A, Smachylo I, Sopel O, Kucher S. Bronchial Asthma: Genetic Factors Contributing to its Pathogenesis. Open Access Maced J Med Sci [Internet]. 2021 Feb. 5 [cited 2024 Apr. 24];9(F):590-4. Available from: https://oamjms.eu/index.php/mjms/article/view/6788

Issue

Section

Narrative Review Article

Categories