Antiproliferative Effect of Mesenchymal Stem Cells on Human Breast Carcinoma: New Insight on FOXO/lncRNA-AF085935 Axis

Authors

  • Sahar H. Ahmed Department of Medical Laboratory Technology https://orcid.org/0000-0002-0436-5053
  • Abeer Mostafa Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
  • Amany A. Abou-Elalla Department of Medical Laboratory Technology

DOI:

https://doi.org/10.3889/oamjms.2021.6814

Keywords:

Breast carcinoma, Mesenchymal stem cells, Interleukin-6, Nuclear factor-kappa B, TLR4 and FOXO/LncRNA AF085935 axis

Abstract

AIM: Cancer breast is one of the most common cancer in women leading to death; that is why we are in urgent need to develop new modalities of treatment. Mesenchymal stem cells (MSCs) have an anti-inflammatory effect due to capability to regenerate the damaged tissues.

METHODS: MCF7 breast cancer cells were divided into two groups; group 1: untreated cancer cells, group 2: cancer cell cocultured with MSCs; after 24 incubation the cells from the two groups were collected to assess cell proliferation, Interleukin-6 (IL-6) levels and genes expression of Nuclear factor-kappa B (NF-KB), FOXO, and LncRNA AF085935.

RESULTS: Statistically significant decrease in cancer cell proliferation and all other studied parameters in cancer cells after coculture with MSCs.

CONCLUSION: Breast carcinoma once initiated; it runs in a vicious circle due to stimulation of FOXO/LncRNA AF085935 axis by the inflammatory mediators released from cancer environment. FOXO/LncRNA AF085935 induces cancer proliferation and survival; furthermore, FOXO once induced, it produces further induction of inflammatory cytokines IL-6 and NF-KB and so on, MSCs due to its anti-inflammatory role could break this circle and thus inhibit cancer cell proliferation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Muscatell KA, Eisenberger NI, Dutcher JM, Cole SW, Bower JE. Links between inflammation, amygdala reactivity, and social support in breast cancer survivors. Brain Behav Immun. 2016;53:34-8. https://doi.org/10.1016/j.bbi.2015.09.008 PMid:26384778 DOI: https://doi.org/10.1016/j.bbi.2015.09.008

Zhao S, Zhang Y, Zhang Q, Wang F, Zhang D. Toll-like receptors and prostate cancer. Front Immunol. 2014;5:352. https://doi.org/10.3389/fimmu.2014.00352 PMid:25101092 DOI: https://doi.org/10.3389/fimmu.2014.00352

Wang X, Li X, Zhang X, Zang L, Yang H, Zhao W, et al. Toll-like receptor 4-induced inflammatory responses contribute to the tumor-associated macrophages formation and infiltration in patients with diffuse large B-cell lymphoma. Ann Diagn Pathol 2015;19(4):232-8. https://doi.org/10.1016/j.anndiagpath.2015.04.008 PMid:26071054 DOI: https://doi.org/10.1016/j.anndiagpath.2015.04.008

Dabagh-Gorjani F, Anvari F, Zolghadri J, Kamali-Sarvestani E, Gharesi-Fard B. Differences in the expression of TLRs and inflammatory cytokines in pre-eclamptic compared with healthy pregnant women. Iran J Immunol. 2014;11(4):233-45. https://doi.org/10.1016/j.placenta.2009.11.004 PMid:25549591 DOI: https://doi.org/10.1016/j.placenta.2009.11.004

Matijevic T, Pavelic J. Toll-like receptors: Cost or benefit for cancer? Curr Pharm Des 2010;16(9):1081-90. https://doi.org/10.2174/138161210790963779 PMid:20030618 DOI: https://doi.org/10.2174/138161210790963779

Sabry D, Mostafa A, Hassouna A. Breast carcinoma is a multifactorial disease involving FOXN3, SINA3 and NEAT through repression of GATA3 and TJP. J Thorac Dis. 2018;10(3):1167-71. https://doi.org/10.21037/jtd.2018.02.65 PMid:29707264 DOI: https://doi.org/10.21037/jtd.2018.02.65

Zhao Y, Guo Q, Chen J, Hu J, Wang S, Sun Y. Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: A clinical and in vitro investigation. Oncol Rep. 2014;31(1):358-64. https://doi.org/10.3892/or.2013.2850 PMid:24247585 DOI: https://doi.org/10.3892/or.2013.2850

Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in cancer. Dis Markers 2017;2017:7243968. https://doi.org/10.1155/2017/7243968 DOI: https://doi.org/10.1155/2017/7243968

Chulpanova DS, Kitaeva KV, Tazetdinova LG, James V, Rizvanov AA, Solovyeva VV. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front Pharmacol. 2018;9:259. https://doi.org/10.3389/fphar.2018.00259 PMid:29615915 DOI: https://doi.org/10.3389/fphar.2018.00259

Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells. 2006;24(3):781-92. https://doi.org/10.1634/stemcells.2005-0330 PMid:16223852 DOI: https://doi.org/10.1634/stemcells.2005-0330

Deshmukh SK, Srivastava SK, Dyess TP, Holliday NP, Singh AP. Inflammation, immunosuppressive microenvironment and breast cancer: Opportunities for cancer prevention and therapy. Ann Transl Med. 2019;7(20):593. https://doi.org/10.21037/atm.2019.09.68 PMid:31807574 DOI: https://doi.org/10.21037/atm.2019.09.68

Dethlefsen C, Højfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat. 2013;138(3):657-64. https://doi.org/10.1007/s10549-013-2488-z PMid:23532539 DOI: https://doi.org/10.1007/s10549-013-2488-z

Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014;2(9):823-30. https://doi.org/10.1158/2326-6066.cir-14-0112 DOI: https://doi.org/10.1158/2326-6066.CIR-14-0112

Scherzad A, Steber M, Gehrke T, Rak K, Froelich K, Schendzielorz P, et al. Human mesenchymal stem cells enhance cancer cell proliferation via IL-6 secretion and activation of ERK1/2. Int J Oncol. 2015;47(1):391-7. https://doi.org/10.3892/ijo.2015.3009 PMid:25997536 DOI: https://doi.org/10.3892/ijo.2015.3009

Bhatelia K, Singh K, Singh R. TLRs: Linking inflammation and breast cancer. Cell Signal. 2014;26:2350-7. https://doi.org/10.1016/j.cellsig.2014.07.035 PMid:25093807 DOI: https://doi.org/10.1016/j.cellsig.2014.07.035

Luddy KA, Robertson-Tessi M, Tafreshi NK, Soliman H, Morse DL. The role of toll-like receptors in colorectal cancer progression: Evidence for epithelial to leucocytic transition. Front Immunol. 2014;5:429. https://doi.org/10.3389/fimmu.2014.00429 PMid:25368611 DOI: https://doi.org/10.3389/fimmu.2014.00429

Bhattacharya D, Yusuf N. Expression of toll-like receptors on breast tumors: Taking a toll on tumor microenvironment. Int J Breast Cancer 2012;2012:716564. https://doi.org/10.1155/2012/716564 PMid:22295250 DOI: https://doi.org/10.1155/2012/716564

Mostafa A, Ibrahim NE, Sabry D, Fathy W, Elkazaz AY. Insulin-like growth factor initiates hepatocellular carcinoma in chronic hepatitis C virus patients through induction of long non-coding ribonucleic acids AF085935: Role of LncRNA AF085935 in HCC development. Open Access Maced J Med Sci. 2021;9:222-8. https://doi.org/10.3889/oamjms.2021.5909 DOI: https://doi.org/10.3889/oamjms.2021.5909

Fan W, Morinaga H, Kim JJ, Bae E, Spann NJ, Heinz S, et al. FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO J. 2010;29(24):4223-36. https://doi.org/10.1038/emboj.2010.268 PMid:21045807 DOI: https://doi.org/10.1038/emboj.2010.268

Ito Y, Daitoku H, Fukamizu A. Foxo1 increases pro-inflammatory gene expression by inducing C/EBPbeta in TNF-alpha-treated adipocytes. Biochem Biophys Res Commun. 2009;378(2):290-5. https://doi.org/10.1016/j.bbrc.2008.11.043 PMid:19026986 DOI: https://doi.org/10.1016/j.bbrc.2008.11.043

Downloads

Published

2021-09-12

How to Cite

1.
Ahmed SH, Mostafa A, Abou-Elalla AA. Antiproliferative Effect of Mesenchymal Stem Cells on Human Breast Carcinoma: New Insight on FOXO/lncRNA-AF085935 Axis. Open Access Maced J Med Sci [Internet]. 2021 Sep. 12 [cited 2024 Nov. 21];9(A):748-52. Available from: https://oamjms.eu/index.php/mjms/article/view/6814