Expression of Anaplastic Lymphoma Kinase in Astrocytic Tumors (Histopathological and Immunohistochemical Study)

Authors

  • Abdul Hakeem Ibrahim Abdul Hakeem Department of Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
  • Randa Said Taha Khaled Department of Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
  • Mohamed Sherif Ismail Department of Pathology, Faculty of Medicine, Cairo University, Giza, Egypt

DOI:

https://doi.org/10.3889/oamjms.2021.6818

Keywords:

Astrocytic tumors, ALK, Glioblastoma, Immunohistochemistry

Abstract

BACKGROUND: Astrocytic tumors are the most common primary brain tumors. Glioblastoma is the most common astrocytic tumor representing the highest World Health Organization (WHO) grade (WHO grade IV) with poor prognosis and short survival time. Anaplastic lymphoma kinase (ALK) has a role in embryonic central nervous system development. ALK receptor is thought to contribute to nervous system function, repair, and metabolic homeostasis and is expressed in high-grade tumors like anaplastic large cell lymphoma that makes it a potential target for therapeutic intervention.

AIM: This work aimed to examine the immunohistochemical expression of ALK in astrocytic tumors and its correlation with age, sex, clinical presentation, location, laterality, recurrence, and WHO grade to implicate possible therapeutic potential.

METHODS: This retrospective study was conducted on sixty cases of archived, formalin-fixed, paraffin-embedded tissue blocks that included different subtypes and grades of astrocytic tumors. Immunohistochemistry using ALK monoclonal antibody was performed using a standard avidin-biotin-peroxidase system.

RESULTS: Of the sixty cases, 57 (95%) cases were negative for ALK, while three (5%) cases are positive for ALK; all showed the strong intensity of expression. No statistically significant association was found between ALK expression and astrocytic tumors in addition to other clinical variables of the studied tumors.

CONCLUSIONS: Most cases of astrocytic tumors showed negative ALK expression apart from three positive cases seen in higher WHO grades, especially gliosarcoma. The high number of negative cases for ALK in our study group suggests that ALK expression is not associated with a prognostic significance toward astrocytic tumors whatever its grade.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. Primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol. 2015;17 Suppl 4:iv1-62. https://doi.org/10.1093/neuonc/nov189 PMid:26511214 DOI: https://doi.org/10.1093/neuonc/nov189

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO classification of tumors of the CNS. Acta Neuropathol. 2007;114(2):97-109. https://doi.org/10.1007/s00401-007-0243-4 PMid:17618441 DOI: https://doi.org/10.1007/s00401-007-0243-4

Reifenberger G, Perry A, Louis DN. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016;131(6):803-20. https://doi.org/10.1007/s00401-016-1545-1 PMid:27157931 DOI: https://doi.org/10.1007/s00401-016-1545-1

Wrensch M, Minn Y, Chew T. Epidemiology of primary brain tumors: Current concepts and review of the literature. Neuro Oncol. 2002;4(4):278-99. https://doi.org/10.1093/ neuonc/4.4.278 PMid:12356358 DOI: https://doi.org/10.1093/neuonc/4.4.278

Hardell L, Carlberg M. Mobile phone and cordless phone use and risk for glioma-analysis of pooled case-control studies in Sweden, 1997-2003 and 2007-2009. Pathophysiology. 2015;22(1):1-13. https://doi.org/10.1016/j.pathophys.2014.10.001 PMid:25466607 DOI: https://doi.org/10.1016/j.pathophys.2014.10.001

Ostrom QT, Bauchet L, Davis F, Deltour I, Eastman C, Fisher JL, et al. The epidemiology of glioma in adults: A “state of the science” review. Neurooncology. 2014;16(7):896-913. https://doi.org/10.1093/neuonc/nou087 PMid:24842956 DOI: https://doi.org/10.1093/neuonc/nou087

Kitange GJ, Templeton KL, Jenkins RB. Recent advances in the molecular genetics of primary gliomas. Opin Oncol. 2003;15(3):197-203. https://doi.org/10.1097/00001622-200305000-00003 PMid:12778011 DOI: https://doi.org/10.1097/00001622-200305000-00003

Globocan. Cancer Incidence and Mortality Worldwide: IARC Cancer-base No. 11. (Database on the Internet). Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://www.globocan.iarc.fr [Last accessed on 2016 Jun 14].

Zalata KR, El-Tantawy DA, Abdel-Aziz A, Ibraheim AW, Halaka AH, Gawish HH, et al. Frequency of central nervous system tumors in Delta region. Indian J Pathol Microbiol. 2011;54(2):299-306. https://doi.org/10.4103/0377-4929.81607 PMid:21623078 DOI: https://doi.org/10.4103/0377-4929.81607

Mokhtar N, Salama A, Badawy O, Khorshed E, Mohamed G, Ibrahim M, et al. Cancer Pathology Profile 2000-2011 United States: NCI; 2011.

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Organization Histological Classification of Tumours of the Central Nervous System. France: International Agency for Research on Cancer.

Forbes JA, Mobley BC, O’Lynnger TM, Cooper CM, Ghiassi M, Hanif R, et al. Pediatric cerebellar pilomyxoid-spectrum astrocytomas. J Neurosurg Pediatr. 2011;8(1):90-6. https://doi.org/10.3171/2011.4.PEDS1115 PMid:21721894 DOI: https://doi.org/10.3171/2011.4.PEDS1115

Wirsching HG, Galanis E, Weller M. Glioblastoma. Handb Clin Neurol. 2016;134:381-97. https://doi.org/10.1016/B978-0-12-802997-8.000232 PMid:26948367 DOI: https://doi.org/10.1016/B978-0-12-802997-8.00023-2

Burzynski SR. Treatments for astrocytic tumors in children. Paediatr Drugs. 2006;8(3):167-78. https://doi.org/10.2165/00148581-200608030-00003 PMid:16774296 DOI: https://doi.org/10.2165/00148581-200608030-00003

Kleihues P, Burger PC, Rosenblum MK, Paulus W, Scheithauer BW. WHO Classification of Tumours: Pathology and Genetics of Tumours of the Nervous System. Lyon: IARC Press;2007. p. 30-2.

Choi SH, Kim JW, Chang JS, Cho JH, Kim SH, Chang JH, et al. Impact of including peritumoral edema in radiotherapy target volume on patterns of failure in glioblastoma following temozolomide-based chemoradiotherapy. Sci Rep. 2017;7:42148. https://doi.org/10.1038/srep42148 PMid:28176884 DOI: https://doi.org/10.1038/srep42148

Furnari FB, Fenton T, Bachoo RM. Malignant astrocytic glioma: Genetics, biology, and treatment. Genes Dev. 2007;21(21):2683-710. https://doi.org/10.1101/gad.1596707 PMid:17974913 DOI: https://doi.org/10.1101/gad.1596707

Perme MP, Stare J, Estève J. On estimation in relative survival. Biometrics. 2012;68(1):113-20. https://doi.org/10.1111/j.1541-0420.2011.01640.x PMid:21689081 DOI: https://doi.org/10.1111/j.1541-0420.2011.01640.x

Kennedy B. Astrocytoma; 2016. Available from: http://www.emedicine.medscape.com/article/283453. [Last accessed on 2021 Oct 30].

Garcia CR, Slone SA, Dolecek TA, Huang B, Neltner JH, Villano JL. Primary central nervous system tumor treatment and survival in the United States, 2004-2015. J Neurooncol. 2019;144(1):179-91. https://doi.org/10.1007/s11060-019-03218-8 PMid:31254264 DOI: https://doi.org/10.1007/s11060-019-03218-8

Morris SW, Kirstein MN, Valentine MB. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281-4. https://doi.org/10.1126/science.8122112 PMid:8122112 DOI: https://doi.org/10.1126/science.8122112

Yao S, Cheng M, Zhang Q, Wasik M, Kelsh R, Winkler C. Anaplastic lymphoma kinase is required for neurogenesis in the developing central nervous system of zebrafish. PLoS One. 2013;8(5):e63757. https://doi.org/10.1371/journal.pone.0063757 Mid:23667670 DOI: https://doi.org/10.1371/journal.pone.0063757

Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S, et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci USA. 1996;93(9):4181-6. https://doi.org/10.1073/pnas.93.9.4181 PMid:8633037 DOI: https://doi.org/10.1073/pnas.93.9.4181

Wang D, Li D, Qin G, Zhang W, Ouyang J, Zhang M, et al. The structural characterization of tumor fusion genes and proteins. Comput Math Methods Med. 2015;2015:912742. https://doi.org/10.1155/2015/912742 PMid:26347798 DOI: https://doi.org/10.1155/2015/912742

Dejean E, Renalier MH, Foisseau M, Agirre X, Joseph N, de Paiva GR. Hypoxia-microRNA-16 downregulation induces VEGF expression in anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphomas. Leukemia. 2011;25(12):1882-90. https://doi.org/10.1038/leu.2011.168 PMid:21778999 DOI: https://doi.org/10.1038/leu.2011.168

Wiesner T, Lee W, Obenauf A, Ran L, Murali R, Zhang Q, et al. Alternative transcription initiation leads to expression of novel ALK isoform in cancer. Nature. 2015;526(7573):453-7. https://doi.org/10.1038/nature1525 PMid:26444240 DOI: https://doi.org/10.1038/nature15258

Couts KL, Bemis J, Turner JA, Bagby SM, Murphy D, Christiansen J, et al. ALK inhibitor response in melanomas expressing EML4-ALK fusions and alternate ALK isoforms. Mol Cancer Ther. 2018;17(1):222-31. https://doi.org/10.1158/1535-7163.MCT-17-0472 PMid:29054983 DOI: https://doi.org/10.1158/1535-7163.MCT-17-0472

Aghajan Y, Levy ML, Malicki DM, Crawford JR. Novel PPP1CB-ALK fusion protein in a high-grade glioma of infancy. BMJ Case Rep. 2016;2016:bcr2016217189. https://doi.org/10.1136/bcr-2016-217189 PMid:27530886 DOI: https://doi.org/10.1136/bcr-2016-217189

Grob T, Heilenkotter U, Geist S, Paluchowski P, Wilke C, Jaenicke F. Rare oncogenic mutations of predictive markers for targeted therapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;134(2):561-7. https://doi.org/10.1007/s10549-012-2092-7 PMid:22610646 DOI: https://doi.org/10.1007/s10549-012-2092-7

Chiba R, Akiya M, Hashimura M, Oguri Y, Inukai M, Hara A, et al. ALK signaling cascade confers multiple advantages to glioblastoma cells through neovascularization and cell proliferation. PLoS One. 2017;12(8):e0183516. https://doi.org/10.1371/journal.pone.0183516 PMid:28837676 DOI: https://doi.org/10.1371/journal.pone.0183516

Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468(7325):824-8. https://doi.org/10.1038/nature09557 PMid:21102434 DOI: https://doi.org/10.1038/nature09557

Marzec M, Liu X, Wong W, Yang Y, Pasha T, Kantekure K. Oncogenic kinase NPM/ALK induces expression of HIF-1α mRNA. Oncogene. 2011;30(11):1372-8. https://doi.org/10.1038/onc.2010.505 PMid:21102525 DOI: https://doi.org/10.1038/onc.2010.505

Wellstein A. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers. Front Oncol. 2012;2:192. https://doi.org/10.3389/fonc.2012.00192 PMid:23267434 DOI: https://doi.org/10.3389/fonc.2012.00192

Anne-Florence B, Graham M, Ramkissoon S, Ramkissoon L, Pelton K, Pages M, et al. Ampifications and rearrangements are recognizable targets in glioblastoma. Neurooncology. 2018;20 Suppl 6:vi204-5. https://doi.org/10.1093/neuonc/noy148.848 DOI: https://doi.org/10.1093/neuonc/noy148.848

Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A. Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem. 2002;277(16):14153-8. https://doi.org/10.1074/jbc.M112354200 PMid:11809760 DOI: https://doi.org/10.1074/jbc.M112354200

Grzelinski M, Steinberg F, Martens T, Czubayko F, Lamszus K, Aigner A. Enhanced antitumorigenic effects in glioblastoma on double targeting of pleiotrophin and its receptor ALK. Neoplasia. 2009;11(2):145-56. https://doi.org/10.1593/neo.81040 PMid:19177199 DOI: https://doi.org/10.1593/neo.81040

Hudson L, Kulig K, Young D, McLendon R, Abernet A. ALK and cMET expression in glioblastoma multiforme: Implications for therapeutic targeting. Mol Cancer Ther. 2011;10 Suppl 1:A42. https://doi.org/10.1158/1535-7163.TARG-11-A42 DOI: https://doi.org/10.1158/1535-7163.TARG-11-A42

Wallace GC, Dixon-Mah YN, Vandergrift WA, Ray SK, Haar CP, Mittendorf AM, et al. Targeting oncogenic ALK and MET in glioblastoma. Metab Brain Dis. 2013;28(3):355-66. https://doi.org/10.1007/s11011-013-9401-7 PMid:23543207 DOI: https://doi.org/10.1007/s11011-013-9401-7

Morana G, Tortora D, Staglianò S, Nozza P, Mascelli S, Severino M, et al. Pediatric astrocytic tumor grading: Comparison between arterial spin labeling and dynamic susceptibility contrast MRI perfusion. Neuroradiology. 2018;60(4):437-46. https://doi.org/10.1007/s00234-018-1992-6 PMid:29453753 DOI: https://doi.org/10.1007/s00234-018-1992-6

Zhang L, Kundu S, Feenstra T, Li X, Jin C, Laaniste L, et al. Pleiotrophin promotes vascular abnormalization in gliomas correlates with poor survival in astrocytomas. Sci Signal. 2015;8(406):ra125. https://doi.org/10.1126/scisignal.aaa1690 PMid:26645582 DOI: https://doi.org/10.1126/scisignal.aaa1690

Karagkounis G, Stranjalis G, Argyrakos T, Pantelaion V, Mastoris K, Rontogianni D, et al. Anaplastic lymphoma kinase expression and gene alterations in glioblastoma: Correlations with clinical outcome. J Clin Pathol. 2017;70(7):593-9. https://doi.org/10.1136/jclinpath-2016-204102 PMid:27993946 DOI: https://doi.org/10.1136/jclinpath-2016-204102

Bu L, Hameed NU, Luo C, Hong P, Zhou X, Wang S, et al. Germline ALK Variations are associated with a poor prognosis in glioma and IDH-wildtype glioblastoma. J Neurooncol. 2021;152(1):27-36. https://doi.org/10.1007/s11060-020-03676-5 PMid:33486679 DOI: https://doi.org/10.1007/s11060-020-03676-5

Junca A. Villalva C, Tachon G, Rivet P, Cortes U, Guilloteau K, et al. Crizotinib targets in glioblastoma stem cells. Cancer Med. 2017;6(11):2625-34. https://doi.org/10.1002/cam4.1167 PMid:28960893 DOI: https://doi.org/10.1002/cam4.1167

Schäfer N, Gielen GH, Rauschenbach L, Kebir S, Till A, Reinartz R, et al. Longitudinal heterogeneity in glioblastoma: Moving targets in recurrent versus primary tumors. J Transl Med. 2019;17(1):96. https://doi.org/10.1186/s12967-019-1846-y PMid:30894200 DOI: https://doi.org/10.1186/s12967-019-1846-y

Chmielecki J, Bailey M, He J, Elvin J, Vergilio JA, Ramkissoon S, et al. Genomic profiling of a large set of diverse pediatric cancers identifies known and novel mutations across tumor spectra. Cancer Res. 2017;77(2):509-19. https://doi.org/10.1158/0008- 5472.CAN-16-1106 PMid:28069802 DOI: https://doi.org/10.1158/0008-5472.CAN-16-1106

Mahzouni P, Taheri F. An immunohistochemical study of cyclin D1 expression in astrocytic tumors and its correlation with tumor grade. Iran J Pathol. 2019;14(3):252-7. https://doi.org/10.30699/ijp.2019.82024.1771 PMid:31583003 DOI: https://doi.org/10.30699/IJP.2019.82024.1771

Raverot G, Wierinckx A, Dantony E, Auger C, Chapas G, Villeneuve L, et al. Prognostic factors in prolactin pituitary tumors: Clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up. J Clin Endocrinol Metab. 2010;95(4):1708-16. https://doi.org/10.1210/jc.2009-1191 PMid:20164287 DOI: https://doi.org/10.1210/jc.2009-1191

Feldheim J, Kessler AF, Schmitt D, Wilczek L, Linsenmann T, Dahlmann M, et al. Expression of activating transcription factor 5 (ATF5) is increased in astrocytomas of different WHO grades and correlates with survival of glioblastoma patients. Onco Targets Ther. 2018;11:8673-84. https://doi.org/10.2147/OTT.S176549 PMid:30584325 DOI: https://doi.org/10.2147/OTT.S176549

Sun ZL, Chan AK, Chen LC, Tang C, Zhang ZY, Ding XJ, et al. TERT promoter mutated WHO grades II and III gliomas are located preferentially in the frontal lobe and avoid the midline. Int J Clin Exp Pathol. 2015;8(9):11485-94. PMid:26617880

Sánchez IV, Loddenkemper T. Seizures caused by brain tumors in children. Seizure. 2017;44:98-107. https://doi.org/10.1016/j.seizure.2016.11.028 Mid:28017579 DOI: https://doi.org/10.1016/j.seizure.2016.11.028

Rasmussen BK, Hansen S, Laursen RJ, Kosteljanetz M, Schultz H, Nørgård BM, et al. Epidemiology, clinical characteristics, symptoms and predictors of glioma patients grade I-IV in Danish neuro-oncology registry. J Neurooncol. 2017;135(3):571-9. https://doi.org/10.1007/s11060-017-2607-5 PMid:28861666 DOI: https://doi.org/10.1007/s11060-017-2607-5

Dobran M, Nasi D, Chiriatti S, Gladi M, Somma LD, Iacoangeli M, et al. Prognostic factors in glioblastoma: Is there a role for epilepsy. Neurol Med Chir (Tokyo). 2018;58(3):110-5. https://doi.org/10.2176/nmc.oa.2017-0167 PMid:29343677 DOI: https://doi.org/10.2176/nmc.oa.2017-0167

Keogh BP, Henson JW. Clinical manifestations and diagnostic imaging of brain tumors. Hematol Oncol Clin North Am. 2012;26(4):733-55. https://doi.org/10.1016/j.hoc.2012.05.002 PMid:22794281 DOI: https://doi.org/10.1016/j.hoc.2012.05.002

Cai J, Zhang C, Zhang W, Wang G, Yao K, Wang Z, et al. ATRX, IDH1-R132H and Ki-67 immunohistochemistry as a classification scheme for astrocytic tumors. Oncoscience. 2016;3(7-8):258-65. https://doi.org/10.18632/oncoscience.317 PMid:27713914 DOI: https://doi.org/10.18632/oncoscience.317

Rosager AM, Sørensen MD, Dahlrot RH, Hansen S, Schonberg DL, Rich JN, et al. Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors: Expression and prognostic value. PLoS One. 2017;12(8):e0182954. https://doi.org/10.1371/journal.pone.0182954 PMid:28837569 DOI: https://doi.org/10.1371/journal.pone.0182954

Soomro SH, Ting LR, Qing YY, Ren M. Molecular biology of glioblastoma: Classification and mutational locations. J Pak Med Assoc. 2017;67(9):1410-4. PMid:28924284

Schneider T, Mawrin C, Scherlach C, Skalej M, Firsching R. Gliomas in adults. Dtsch Arztebl Int. 2010;107(45):799-807; quiz 808. https://doi.org/10.3238/arztebl.2010.0799 PMid:21124703 DOI: https://doi.org/10.3238/arztebl.2010.0799

Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko, A. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol. 2018;20 Suppl 4:iv1-iv86. https://doi.org/10.1093/neuonc/noy131 PMid:30445539 DOI: https://doi.org/10.1093/neuonc/noy131

Robinson C, Kleinschmidt BK. IDH1-mutation in diffuse gliomas in persons age 55 years and over. J Neuropathol Exp Neurol. 2017;76(2):151-4. https://doi.org/10.1093/jnen/nlw112 PMid:28110298 DOI: https://doi.org/10.1093/jnen/nlw112

Martínez-Sáez E, Peg V, Ortega-Aznar A, Martínez-Ricarte F, Camacho J, Hernández-Losa J, et al. peIF4E as an independent prognostic factor and a potential therapeutic target in diffuse infiltrating astrocytomas. Cancer Med. 2016;5(9):2501-12. https://doi.org/10.1002/cam4.817 PMid:27440383 DOI: https://doi.org/10.1002/cam4.817

Cai X, Sughrue ME. Glioblastoma: New therapeutic strategies to address cellular and genomic complexity. Oncotarget. 2018;9(10):9540-54. https://doi.org/10.18632/oncotarget.23476 PMid:29507709 DOI: https://doi.org/10.18632/oncotarget.23476

Salo A, Niemela M Joukamaa and J Koivukangas. Effect of brain tumour laterality on patients’ perceived quality of life. J Neurol Neurosurg Psychiatry. 2002;72(3):373-7. https://doi.org/10.1136/jnnp.72.3.373 PMid:11861699 DOI: https://doi.org/10.1136/jnnp.72.3.373

Bornhorst M, Frappaz D, Packer RJ. Pilocytic astrocytomas. Handb Clin Neurol. 2016;134:329-44. https://doi.org/10.1016/978-0-12-802997-8.00020-7 Mid:26948364 DOI: https://doi.org/10.1016/B978-0-12-802997-8.00020-7

Downloads

Published

2021-10-14

How to Cite

1.
Ibrahim Abdul Hakeem AH, Khaled RST, Sherif Ismail M. Expression of Anaplastic Lymphoma Kinase in Astrocytic Tumors (Histopathological and Immunohistochemical Study). Open Access Maced J Med Sci [Internet]. 2021 Oct. 14 [cited 2024 Mar. 28];9(A):911-23. Available from: https://oamjms.eu/index.php/mjms/article/view/6818