The Impact of Luteinizing Hormone/Chorionic Gonadotropin Hormone Receptor Gene Polymorphism rs68073206 in Men with Non-obstructive Azoospermia: A Case-control Study

Authors

  • Abdul-Rahim A. Ali Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Baghdad, Iraq
  • Omar F. Abdul-Rasheed Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Baghdad, Iraq https://orcid.org/0000-0003-3016-9176
  • Ula M. Al-Kawaz Department of Male Infertility, High Institute of Infertility Diagnosis and Assisted Reproductive Technologies, Al-Nahrain University, Baghdad, Iraq https://orcid.org/0000-0003-3998-2665

DOI:

https://doi.org/10.3889/oamjms.2021.6821

Keywords:

Non-obstructive azoospermia, Luteinizing hormone/chorionic gonadotropin hormone receptor rs68073206 polymorphism, Inhibin B, Gonadotropin

Abstract

Background: The functional consequences of the luteinizing hormone/chorionic gonadotropin hormone receptor (LHCGR) gene single nucleotide polymorphism (rs68073206) on male infertility in patients with non-obstructive azoospermia (NOA) is not clear.

Objective: To examine whether the presence of LHCGR gene; rs68073206 single nucleotide polymorphisms (SNPs) can be associated with incidence of non-obstructive azoospermia.

Materials and methods: A case-control study comprised of a total of 70 unrelated Iraqi infertile men with non-obstructive azoospermia (zero sperm in semen) whose were on two groups: Group I that were diagnosed to have NOA but didn’t receive infertility treatment yet (33 patient with age of 31.58±1.059 year) and group II that were receiving injectable gonadotropin treatment (37 patient with age of 33.46±1.173 year). In addition to 34 age and BMI matched healthy fertile normozoospermic men (according to the parameters of WHO, 2010). The study population was genotyped by TaqMan assay for LHCGR gene single nucleotide polymorphism (rs68073206). The level of each hormone was estimated by immunoassay technique while the sperm analyses were conducted in accordance with the World Health Organization criteria.

Results: The study revealed a statistically significant higher hormonal level of serum inhibin B in infertile group I patients with wild GG genotype (246.445±224.106 pg/ml), and the p-value is (0.0439) as compared to that hormone levels of GT and TT genotypes carriers that were (85.969±71.685 pg/ml) and (56.420±23.988 pg/ml) respectively. ). The genotyping variations of patients, whether carrying the homozygous GG, heterozygous GT or homozygous TT genotype, did not reveal a statistically significant difference in distribution as compared to control individuals.

Conclusions: The LHCGR gene rs68073206 polymorphisms in our population having non-obstructive azoospermia can be suggested to have a modulating potential in variable gonadotropin sensitivity. The detected non-significant difference in genotypic prevalence can be attributable to the limited sample size.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: A systematic analysis of 277 health surveys. PLoS Med. 2012;9:e1001356. https://doi.org/10.1371/journal.pmed.1001356 PMid:23271957 DOI: https://doi.org/10.1371/journal.pmed.1001356

Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: A review of literature. J Hum Reprod Sci. 2015;8(4):191-6. https://doi.org/10.4103/0974-1208.170370 PMid:26752853 DOI: https://doi.org/10.4103/0974-1208.170370

World Health Organization. WHO Laboratory Manual for The Examination and processing of Human Semen. 5th ed. Geneva: World Health Organization; 2010. p. 10-56.

Chow AK, Levine LA. Testicular sperm aspiration in men with presumed non-obstructive azoospermia: Analysis of FSH level as a predictor of successful sperm retrieval. J Genital Surg 2019;1:1-8. https://doi.org/10.21608/jgs.2017.4795 DOI: https://doi.org/10.21608/jgs.2017.4795

Chen X, Ma Y, Zou S, Wang S, Qiu J, Xiao Q, et al. Comparison and outcomes of non-obstructive azoospermia patients with different etiology undergoing MicroTESE and ICSI treatments. Transl Androl Urol. 2019;8(4):366-373. https://doi.org/10.21037/tau.2019.04.08 PMid:31555560 DOI: https://doi.org/10.21037/tau.2019.04.08

Yumusak OH, Cinar M, Kahyaoğlu S, Buyuk GN, Oksuzoglu A, Tasci Y. Can testicular size be a predictive factor for successful sperm retrieval in patients with non-obstructive azoospermia? Reprod Med Endocrinol Infertil. 2019;25:1-5. https://doi.org/10.21613/gorm.2018.890 DOI: https://doi.org/10.21613/GORM.2018.890

Karamazak S, Kızılay F, Bahçeci T, Semerci B. Do body mass index, hormone profile and testicular volume effect sperm retrieval rates of microsurgical sperm extraction in the patients with non-obstructive azoospermia? Turk J Urol. 2018;44(3):202-7. https://doi.org/10.5152/tud.2017.80000 PMid:29733793 DOI: https://doi.org/10.5152/tud.2017.80000

Vezzoli V, Duminuco P, Vottero A, Kleinau G, Schülein R, Minari R, et al. A new variant in signal peptide of the human luteinizing hormone receptor (LHCGR) affects receptor biogenesis causing leydig cell hypoplasia. Hum Mol Genet. 2015;24(21):6003-12. https://doi.org/10.1093/hmg/ddv313 PMid:26246498 DOI: https://doi.org/10.1093/hmg/ddv313

Riccetti L, De Pascali F, Gilioli L, Potì F, Giva LB, Marino M, et al. Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro. Reprod Biol Endocrinol. 2017;15(1):2. https://doi.org/10.1186/s12958-016-0224-3 PMid:28056997 DOI: https://doi.org/10.1186/s12958-016-0224-3

Herati AS, Kohn TP, Kassiri B. New frontiers in fertility preservation: A hypothesis on fertility optimization in men with hypergonadotrophic hypogonadism. Transl Androl Urol. 2020;9(2):S171-7. https://doi.org/10.21037/tau.2019.12.39 PMid:32257857 DOI: https://doi.org/10.21037/tau.2019.12.39

Troppmann B, Kleinau G, Krause G, Gromoll J. Structural and functional plasticity of the luteinizing hormone/ choriogonadotrophinreceptor. Hum Reprod Update. 2013;19:583-602. https://doi.org/10.1093/humupd/dmt023 DOI: https://doi.org/10.1093/humupd/dmt023

Krause G, Kreuchwig A, Kleinau G. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor. PLoS One. 2012;7(12):1-11. https://doi.org/10.1371/journal.pone.0052920 PMid:23300822 DOI: https://doi.org/10.1371/journal.pone.0052920

Casarini L, Huhtaniemi I, Simoni M, Rivero-Müller A. Gonadotrophin receptors. In: Endocrinology of the Testis and Male Reproduction. Switzerland: Springer; 2017. p. 1-46. https://doi.org/10.1007/978-3-319-44441-3_4 DOI: https://doi.org/10.1007/978-3-319-44441-3_4

Huhtaniemi I, Rivero-Müller A. Mutations and polymorphisms, and their functional consequences, in gonadotropin and gonadotropin receptor genes. Ovary. 2019;2019:127-48. https://doi.org/10.1016/b978-0-12-813209-8.00008-x DOI: https://doi.org/10.1016/B978-0-12-813209-8.00008-X

Simoni M, Tuttelmann F, Michel C, Bockenfeld Y, Nieschlag E, Gromoll J. Polymorphisms of the luteinizing hormone/ chorionic gonadotropin receptor gene: Association with maldescended testes and male infertility. Pharmacogenet Genomics. 2008;18(3):193-200. https://doi.org/10.1097/fpc.0b013e3282f4e98c PMid:18300940 DOI: https://doi.org/10.1097/FPC.0b013e3282f4e98c

World Medical Association. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-4. https://doi.org/10.1001/jama.2013.281053 PMid:24141714 DOI: https://doi.org/10.1001/jama.2013.281053

Althumairy D, Zhang X, Baez N, Barisas G, Roess DA, Bousfield GR, et al. Glycoprotein G-protein coupled receptors in disease: Luteinizing hormone receptors and follicle stimulating hormone receptors. Diseases. 2020;8(3):35. https://doi.org/10.3390/diseases8030035 PMid:32942611 DOI: https://doi.org/10.3390/diseases8030035

Liu W, Han B, Zhu W, Cheng T, Fan M, Wu J, et al. Polymorphism in the alternative donor site of the cryptic exon of LHCGR: Functional consequences and associations with testosterone level. Sci Rep. 2017;7:45699. https://doi.org/10.1038/srep45699 PMid:28367994 DOI: https://doi.org/10.1038/srep45699

Lindgren I, Bååth M, Uvebrant K, Dejmek A, Kjaer L, Henic E, et al. Lundberg Giwercman, Combined assessment of polymorphisms in the LHCGR and FSHR genes predict chance of pregnancy after in vitro fertilization. Hum Reprod. 2016;31(3):672-83. https://doi.org/10.1093/humrep/dev342 PMid:26769719 DOI: https://doi.org/10.1093/humrep/dev342

Kossack N, Troppmann B, Richter-Unruh A, Kleinau G, Gromoll J. Aberrant transcription of the LHCGR gene caused by a mutation in exon 6A leads to Leydig cell hypoplasia type II. Mol Cell Endocrinol. 2013;366(1):59-67. https://doi.org/10.1016/j.mce.2012.11.018 PMid:23232123 DOI: https://doi.org/10.1016/j.mce.2012.11.018

Braga LH, Lorenzo AJ. The changing elaboration of inhibin b in patients with unilateral testicular maldescent vs vanished testis. J Urol. 2015;193(5):1465-6. https://doi.org/10.1016/j.juro.2015.02.076 PMid:25700564 DOI: https://doi.org/10.1016/j.juro.2015.02.076

Huang X, Bai Q, Yan LY, Zhang QF, Geng L, Qiao J. Combination of serum inhibin B and follicle-stimulating hormone levels can not improve the diagnostic accuracy on testicular sperm extraction outcomes in Chinese non-obstructive azoospermic men. Chin Med J (Engl). 2012;125(16):2885-9. PMid:22932085

Giagulli VA, Carbone D. Hormonal control of inhibin B in men. J Endocrinol Investig. 2006;29(8):706-13. https://doi.org/10.1007/bf03344180 PMid:17033259 DOI: https://doi.org/10.1007/BF03344180

Petrozzi A, Pallotti F, Pelloni M, Anzuini A, Radicioni AF, Lenzi A, et al. Inhibin B: Are modified ranges needed for orchiectomised testicular cancer patients? Asian J Androl. 2019;21(4):332-6. https://doi.org/10.4103/aja.aja_93_18 PMid:30531061 DOI: https://doi.org/10.4103/aja.aja_93_18

Piersma D, Verhoef-Post M, Look MP, Uitterlinden AG, Pols HA, Berns EM, et al. Polymorphic variations in exon 10 of the luteinizing hormone receptor: Functional consequences and associations with breast cancer. Mol Cell Endocrinol. 2007;276(1-2):63-70. https://doi.org/10.1016/j.mce.2007.06.007 PMid:17709176 DOI: https://doi.org/10.1016/j.mce.2007.06.007

Oud MS, Volozonoka L, Smits RM. A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod. 2019;34(5):932-41. https://doi.org/10.1101/425553 PMid:30865283 DOI: https://doi.org/10.1093/humrep/dez022

Salas-Huetos A, Aston KI. Defining new genetic etiologies of male infertility: Progress and future prospects. Transl Androl Urol. 2021;10(3):1486-98. https://doi.org/10.21037/tau.2020.03.43 PMid:33850783 DOI: https://doi.org/10.21037/tau.2020.03.43

Acién P, Maribel A. Disorders of sex development: Classification, review, and impact on fertility. J Clin Med. 2020;9(11):3555. https://doi.org/10.3390/jcm9113555 PMid:33158283 DOI: https://doi.org/10.3390/jcm9113555

Downloads

Published

2021-09-25

How to Cite

1.
Ali A-RA, Abdul-Rasheed OF, Al-Kawaz UM. The Impact of Luteinizing Hormone/Chorionic Gonadotropin Hormone Receptor Gene Polymorphism rs68073206 in Men with Non-obstructive Azoospermia: A Case-control Study. Open Access Maced J Med Sci [Internet]. 2021 Sep. 25 [cited 2024 Nov. 21];9(A):894-900. Available from: https://oamjms.eu/index.php/mjms/article/view/6821