Public Buses Decontamination by Automated Hydrogen Peroxide Aerosolization System

Authors

  • Attapol Arunwuttipong Technopreneurship and Innovation Management Program, Graduate School, Chulalongkorn University, Bangkok, Thailand https://orcid.org/0000-0002-1304-9116
  • Parinton Jangtawee Department of Chemistry, Sensor Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
  • Viwat Vchirawongkwin Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
  • Wiyong Kangwansupamonkon National Nanotechnology Center, National Science and Technology Development Agency, Khlong Luang, Phathum Thani, Thailand https://orcid.org/0000-0002-3719-1301
  • Kavin Asavanant Chulalongkorn Business School, Chulalongkorn University, Bangkok, Thailand https://orcid.org/0000-0002-6373-0575
  • Sanong Ekgasit Department of Chemistry, Sensor Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Research Network NANOTEC-CU on Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

DOI:

https://doi.org/10.3889/oamjms.2021.6828

Keywords:

Aerosolized hydrogen peroxide, Decontamination systems, Public transport decontamination, Surface decontamination, Sustainable mobility

Abstract

BACKGROUND: Public transportation has been linked to an increase in the risk of coronavirus disease 2019 transmission. The effective decontamination system using aerosolized hydrogen peroxide can mitigate the transmission risk from using public transportation.

AIM: The aim of this study was to develop and validate an effective decontamination system for public transport.

METHODS: The experimental research was performed in 13 inter-city public buses. The aerosol generator with ultrasonic atomizer was used in the experiment. The validation process for disinfection was conducted using both a chemical indicator (CI) and spore discs biological indicator (inoculated with 106 Geobacillus stearothermophilus enclosed in glassine envelopes). The CIs and biological indicators were marked by number and placed in nine locations on each bus. The decontamination cycle was developed by analyzed of various aerosolized and decomposition period. Both concentrations of hydrogen peroxide, 5% and 7%, were used for comparison.

RESULTS: In an aerosolized period, both concentrations of hydrogen peroxide at 30 min were effective for sporicidal 6-log reductions. The decontamination cycle totaled 100 min, based on a 70 min average decomposition time.

CONCLUSIONS: The automated hydrogen peroxide aerosolized system is a highly effective and safe method of decontaminating public buses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Jenelius E, Cebecauer M. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales, and passenger counts. Transp Res Interdiscip Perspect. 2020; 8:100242. https://doi.org/10.1016/j.trip.2020.100242 PMid:34173478 DOI: https://doi.org/10.1016/j.trip.2020.100242

Bucsky P. Modal share changes due to COVID-19: The case of Budapest. Transp Res Interdiscip Perspect. 2020; 8:100141. https://doi.org/10.1016/j.trip.2020.100141 PMid:34171021 DOI: https://doi.org/10.1016/j.trip.2020.100141

de Haas M, Faber R, Hamersma M. How COVID-19 and the Dutch ‘intelligent lockdown’ change activities, work, and travel behavior: Evidence from longitudinal data in the Netherlands. Transp Res Interdiscip Perspect. 2020; 6:100150. https://doi.org/10.1016/j.trip.2020.100150 PMid:34171019 DOI: https://doi.org/10.1016/j.trip.2020.100150

Wielechowski M, Czech K, Grzęda Ł. Decline in mobility: Public transport in Poland in the time of the COVID-19 Pandemic. Economies. 2020; 8(4):78. DOI: https://doi.org/10.3390/economies8040078

Borkowski P, Jażdżewska-Gutta M, Szmelter-Jarosz A. Lockdowned: Everyday mobility changes in response to COVID-19. J Transp Geogr. 2021; 90:102906. DOI: https://doi.org/10.1016/j.jtrangeo.2020.102906

Zhang J, Hayashi Y, Frank LD. COVID-19 and transport: Findings from a world-wide expert survey. Transp Policy (Oxf). 2021; 103:68-85. https://doi.org/10.1016/j.tranpol.2021.01.011 PMid:33519127 DOI: https://doi.org/10.1016/j.tranpol.2021.01.011

Kaske M. New York MTA Says Federal Aid Deal Avoids ”Devastating” Cuts; 2020. Available from: https://www.bloomberg.com/news/articles/2020-12-21/new-york-mta-says-federal-aiddeal-prevents-devastating-cuts. [Last accessed on 2021 May 09].

Mehmet S. NEWS Coronavirus Support for UK Buses and Trams Extended to £700 Million; 2020. Available from: https://www.intelligenttransport.com/transport-news/103814/coronavirus-support-for-uk-buses-and-trams-extended-to-700-million. [Last accessed on 2021 May 09].

Tsang D. Battered by the Coronavirus Pandemic, Hong Kong’s MTR Corporation Warns of Losses of HK$4.8 Billion in 2020; 2021. Available from: https://www.sg.news.yahoo.com/battered-coronavirus-pandemic-hong-kong-151205273.html. [Last accessed on 2021 May 09].

Przybylowski A, Stelmak S, Suchanek M. Mobility behavior in view of the impact of the COVID-19 pandemic-public transport users in gdansk case study. Sustainability. 2021; 13(1):364. DOI: https://doi.org/10.3390/su13010364

Kopsidas A, Milioti C, Kepaptsoglou K, Vlachogianni EI. How did the COVID-19 pandemic impact traveler behavior toward public transport? The case of Athens, Greece. Transp Lett. 2021; 13(5-6):1-9. DOI: https://doi.org/10.1080/19427867.2021.1901029

Shen Y, Li C, Dong H, Wang Z, Martinez L, Sun Z, et al. Community outbreak investigation of SARS-CoV-2 transmission among bus riders in Eastern China. JAMA Intern Med. 2020; 180(12):1665-71. https://doi.org/10.1001/jamainternmed.2020.5225 PMid:32870239 DOI: https://doi.org/10.1001/jamainternmed.2020.5225

Luo K, Lei Z, Hai Z, Xiao S, Rui J, Yang H, et al. Transmission of SARS-CoV-2 in public transportation vehicles: A case study in Hunan province, China. Open Forum Infect Dis. 2020; 7(10):ofaa430. https://doi.org/10.1093/ofid/ofaa430 PMid:33123609 DOI: https://doi.org/10.1093/ofid/ofaa430

Yang N, Shen Y, Shi C, Ma AHY, Zhang X, Jian X, et al. In-flight transmission cluster of COVID-19: A retrospective case series. Infect Dis. 2020; 52(12):891-901. https://doi.org/10.1080/23744235.2020.1800814 PMid:32735163 DOI: https://doi.org/10.1080/23744235.2020.1800814

Khanh NC, Thai PQ, Quach HL, Thi NA, Dinh PC, Duong TN, et al. Transmission of SARS-CoV 2 during long-haul flight. Emerg Infect Dis. 2020; 26(11):2617-24. PMid:32946369 DOI: https://doi.org/10.3201/eid2611.203299

World Health Organization. Modes of Transmission of Virus Causing COVID-19: Implications for IPC Precaution Recommendations: Scientific Brief, 27 March 2020. Geneva: World Health Organization; 2020.

Rheinbaben F, Schünemann S, Gross T, Wolff M. Transmission of viruses through contact in a household setting: Experiments using bacteriophage φX174 as a model virus. J Hosp Infect. 2000; 46(1):61-6. https://doi.org/10.1053/jhin.2000.0794 PMid:11023725 DOI: https://doi.org/10.1053/jhin.2000.0794

Lei H, Li Y, Xiao S, Yang X, Lin C, Norris SL, et al. Logistic growth of a surface contamination network and its role in disease spread. Sci Rep. 2017; 7(1):14826. https://doi.org/10.1038/s41598-017-13840-z PMid:29093534 DOI: https://doi.org/10.1038/s41598-017-13840-z

Ben-Shmuel A, Brosh-Nissimov T, Glinert I, Bar-David E, Sittner A, Poni R, et al. Detection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilities. Clin Microbiol Infect. 2020; 26(12):1658-62. https://doi.org/10.1016/j.cmi.2020.09.004 PMid:32919072 DOI: https://doi.org/10.1016/j.cmi.2020.09.004

Cheng VC, Wong SC, Chan VW, So SY, Chen JH, Yip CC, et al. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with Coronavirus disease 2019 (COVID-19). Infect Control Hosp Epidemiol. 2020; 41(11):1258-65. https://doi.org/10.1017/ice.2020.282 PMid:32507114 DOI: https://doi.org/10.1017/ice.2020.282

Ong SW, Lee PH, Tan YK, Ling LM, Ho BC, Ng CG, et al. Environmental contamination in a Coronavirus disease 2019 (COVID-19) intensive care unit-What is the risk? Infect Control Hosp Epidemiol. 2020; 42(6):669-77. https://doi.org/10.1017/ice.2020.1278 PMid:33081858 DOI: https://doi.org/10.1017/ice.2020.1278

Peyrony O, Ellouze S, Fontaine JP, Thegat-Le Cam M, Salmona M, Feghoul L, et al. Surfaces and equipment contamination by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) in the emergency department at a university hospital. Int J Hyg Environ Health. 2020; 230:113600. https://doi.org/10.1016/j.ijheh.2020.113600 PMid:32799101 DOI: https://doi.org/10.1016/j.ijheh.2020.113600

Zhou J, Otter JA, Price JR, Cimpeanu C, Garcia DM, Kinross J, et al. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin Infect Dis. 2020;ciaa905. https://doi.org/10.1093/cid/ciaa905 PMid:32634826 DOI: https://doi.org/10.1101/2020.05.24.20110346

Abrahão JS, Sacchetto L, Rezende IM, Rodrigues RAL, Crispim APC, Moura C, et al. Detection of SARS-CoV-2 RNA on public surfaces in a densely populated urban area of Brazil: A potential tool for monitoring the circulation of infected patients. Sci Total Environ. 2021; 766:142645. https://doi.org/10.1016/j.scitotenv.2020.142645 PMid:33069469 DOI: https://doi.org/10.1016/j.scitotenv.2020.142645

Amoah ID, Pillay L, Deepnarian N, Awolusi O, Pillay K, Ramlal P, et al. Detection of SARS-CoV-2 on Contact Surfaces Within Shared Sanitation Facilities and Assessment of the Potential Risks for COVID-19 Infections, Research Square; 2020. DOI: https://doi.org/10.21203/rs.3.rs-89199/v1

Döhla M, Wilbring G, Schulte B, Kümmerer BM, Diegmann C, Sib E, et al. SARS-CoV-2 in Environmental Samples of Quarantined Households, medRxiv; 2020. DOI: https://doi.org/10.1101/2020.05.28.20114041

Harvey AP, Fuhrmeister ER, Cantrell ME, Pitol AK, Swarthout JM, Powers JE, et al. Longitudinal monitoring of SARS-CoV-2 RNA on high-touch surfaces in a community setting. Environ Sci Technol Lett. 2021; 8(2):168-75. https://doi.org/10.1021/acs.estlett.0c00875 PMid:34192125 DOI: https://doi.org/10.1021/acs.estlett.0c00875

Maestre JP, Jarma D, Yu JR, Siegel JA, Horner SD, Kinney KA. Distribution of SARS-CoV-2 RNA signal in a home with COVID-19 positive occupants. Sci Total Environ. 2021; 778:146201. https://doi.org/10.1016/j.scitotenv.2021.146201 PMid:34030356 DOI: https://doi.org/10.1016/j.scitotenv.2021.146201

Wong JC, Hapuarachchi HC, Arivalan S, Tien WP, Koo C, Mailepessov D, et al. Environmental contamination of SARSCoV-2 in a non-healthcare setting. Int J Environ Res Public Health. 2021; 18(1):117. https://doi.org/10.3390/ijerph18010117 PMid:33375308 DOI: https://doi.org/10.3390/ijerph18010117

van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020; 382(16):1564-7. https://doi.org/10.1056/NEJMc2004973 PMid:32182409 DOI: https://doi.org/10.1056/NEJMc2004973

Xie C, Zhao H, Li K, Zhang Z, Lu X, Peng H, et al. The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health. 2020; 20(1):1202. https://doi.org/10.1186/s12889-020-09296-y PMid:32758198 DOI: https://doi.org/10.1186/s12889-020-09296-y

Cai J, Sun W, Huang J, Gamber M, Wu J, He G. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg Infect Dis. 2020; 26(6):1343-5. https://doi.org/10.3201/eid2606.200412 PMid:32163030 DOI: https://doi.org/10.3201/eid2606.200412

Mondelli MU, Colaneri M, Seminari EM, Baldanti F, Bruno R. Low risk of SARS-CoV-2 transmission by fomites in real-life conditions. Lancet Infect Dis. 2021; 21(5):e112. https://doi.org/10.1016/S1473-3099(20)30678-2 PMid:33007224 DOI: https://doi.org/10.1016/S1473-3099(20)30678-2

Goldman E. Exaggerated risk of transmission of COVID-19 by fomites. Lancet Infect Dis. 2020; 20(8):892-3. https://doi.org/10.1016/S1473-3099(20)30561-2 PMid:32628907 DOI: https://doi.org/10.1016/S1473-3099(20)30561-2

Santarpia JL, Rivera DN, Herrera VL, Morwitzer MJ, Creager HM, Santarpia GW, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep. 2020; 10(1):12732. https://doi.org/10.1038/s41598-020-69286-3 PMid:32728118 DOI: https://doi.org/10.1038/s41598-020-69286-3

Chen T. Fomites and the COVID-19 Pandemic: An Evidence Review on its Role in Viral Transmission; 2021. Available from: https://www.ncceh.ca/sites/default/files/fomites%20and%20covid-19%20march%2022%20final%20in%20template-revised.pdf. [Last accessed on 2021 May 09].

Boone SA, Gerba CP. Significance of fomites in the spread of respiratory and enteric viral disease. Appl Environ Microbiol. 2007; 73(6):1687-96. https://doi.org/10.1128/AEM.02051-0 PMid:17220247 DOI: https://doi.org/10.1128/AEM.02051-06

Desai R, Pannaraj PS, Agopian J, Sugar CA, Liu GY, Miller LG. Survival and transmission of community-associated methicillin-resistant Staphylococcus aureus from fomites. Am J Infect Control. 2011; 39(3):219-25. https://doi.org/10.1016/j.ajic.2010.07.005 PMid:21458684 DOI: https://doi.org/10.1016/j.ajic.2010.07.005

Wu HM, Fornek M, Schwab KJ, Chapin AR, Gibson K, Schwab E, et al. A norovirus outbreak at a long-term-care facility: The role of environmental surface contamination. Infect Control Hosp Epidemiol. 2005; 26(10):802-10. https://doi.org/10.1086/502497 PMid:16276954 DOI: https://doi.org/10.1086/502497

Lei H, Li Y, Xiao S, Lin CH, Norris SL, Wei D, et al. Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyzes. Indoor Air. 2018; 28(3):394-403. https://doi.org/10.1111/ina.12445 PMid:29244221 DOI: https://doi.org/10.1111/ina.12445

Telles CR, Roy A, Ajmal MR, Mustafa SK, Ahmad MA, de la Serna JM, et al. The Impact of COVID-19 management policies tailored to airborne SARS-CoV-2 transmission: Policy analysis. JMIR Public Health Surveill. 2021; 7(4):e20699. https://doi.org/10.2196/20699 PMid:33729168 DOI: https://doi.org/10.2196/20699

Carling PC, Briggs JL, Perkins J, Highlander D. Improved cleaning of patient rooms using a new targeting method. Clin Infect Dis. 2006; 42(3):385-8. https://doi.org/10.1086/499361 PMid:16392086 DOI: https://doi.org/10.1086/499361

Gordon L, Bruce N, Suh KN, Roth V. Evaluating and operationalizing an environmental auditing program: A pilot study. Am J Infect Control. 2014; 42(7):702-7. https://doi.org/10.1016/j.ajic.2014.04.007 PMid:24969123 DOI: https://doi.org/10.1016/j.ajic.2014.04.007

Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control. 2016; 5(1):10. https://doi.org/10.1186/s13756-016-0111-x PMid:27069623 DOI: https://doi.org/10.1186/s13756-016-0111-x

Kim SC, Kwak DB, Kuehn T, Pui DY. Characterization of handheld disinfectant sprayers for effective surface decontamination to mitigate severe acute respiratory Coronavirus virus 2 (SARSCoV-2) transmission. Infect Control Hosp Epidemiol. 2021; 42(7):901-3. https://doi.org/10.1017/ice.2020.1423 PMid:33436119 DOI: https://doi.org/10.1017/ice.2020.1423

Roth K, Michels W. Inter-hospital trials to determine minimal cleaning performance according to the guideline by DGKH, DGSV and AKI. Zentr Steril. 2005; 13(2):106-16.

Ríos-Castillo AG, Umaña FF, Rodríguez-Jerez JJ. Long-term antibacterial efficacy of disinfectants based on benzalkonium chloride and sodium hypochlorite tested on surfaces against resistant gram-positive bacteria. Food Control. 2018; 93:219-25. DOI: https://doi.org/10.1016/j.foodcont.2018.06.008

Pereira BM, Tagkopoulos I, Vieille C. Benzalkonium chlorides: Uses, regulatory status, and microbial resistance. Appl Environ Microbiol. 2019; 85(13):e00377-19. https://doi.org/10.1128/AEM.00377-19 PMid:31028024 DOI: https://doi.org/10.1128/AEM.00377-19

World Health Organization. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 88: Formaldehyde, 2-Butoxyethanol and 1-Tert-Butoxypropan-2-ol. Lyon (FR). 2006. 50. Rutala WA, Weber DJ. Guideline for Disinfection and Sterilization in Healthcare Facilities; 2008.

Havill NL, Moore BA, Boyce JM. Comparison of the microbiological efficacy of hydrogen peroxide vapor and ultraviolet light processes for room decontamination. Infect Control Hosp Epidemiol. 2012; 33(5):507-12. https://doi.org/10.1086/665326 PMid:22476278 DOI: https://doi.org/10.1086/665326

Zinatloo-Ajabshir S, Ghasemian N, Mousavi-Kamazani M, Salavati-Niasari M. Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason Sonochem. 2021; 71:105376. 10.1016/j.ultsonch.2020.105376 PMid:33142222 DOI: https://doi.org/10.1016/j.ultsonch.2020.105376

Zinatloo-Ajabshir S, Baladi M, Salavati-Niasari M. Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple, and green sonochemical approach. Ultrason Sonochem. 2021; 72:105420. https://doi.org/10.1016/j.ultsonch.2020.105420 PMid:33385636 DOI: https://doi.org/10.1016/j.ultsonch.2020.105420

Otter JA, Yezli S, Barbut F, Perl TM. An overview of automated room disinfection systems: When to use them and how to choose them. In: Decontamination in Hospitals and Healthcare. Tamil Nadu: Elsevier; 2020. p. 323-69. DOI: https://doi.org/10.1016/B978-0-08-102565-9.00015-7

Boyce JM, Havill NL, Otter JA, McDonald LC, Adams NM, Cooper T, et al. Impact of hydrogen peroxide vapor room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemiol. 2008; 29(8):723-9. https://doi.org/10.1086/589906 PMid:18636950 DOI: https://doi.org/10.1086/589906

Otter JA, French GL. Survival of nosocomial bacteria and spores on surfaces and inactivation by hydrogen peroxide vapor. J Clin Microbiol. 2009; 47(1):205-7. https://doi.org/10.1128/JCM.02004-08 PMid:18971364 DOI: https://doi.org/10.1128/JCM.02004-08

Holmdahl T, Walder M, Uzcátegui N, Odenholt I, Lanbeck P, Medstrand P, et al. Hydrogen peroxide vapor decontamination in a patient room using feline calicivirus and murine norovirus as surrogate markers for human norovirus. Infect Control Hosp Epidemiol. 2016; 37(5):561-6. https://doi.org/10.1017/ice.2016.15 PMid:26861195 DOI: https://doi.org/10.1017/ice.2016.15

Holmdahl T, Lanbeck P, Wullt M, Walder M. A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems. Infect Control Hosp Epidemiol. 2011; 32(9):831-6. https://doi.org/10.1086/661104 PMid:21828962 DOI: https://doi.org/10.1086/661104

Beswick AJ, Farrant J, Makison C, Gawn J, Frost G, Crook B, et al. Comparison of multiple systems for laboratory whole room fumigation. Appl Biosaf. 2011; 16(3):139-57. DOI: https://doi.org/10.1177/153567601101600303

Fu TY, Gent P, Kumar V. Efficacy, efficiency, and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems. J Hosp Infect. 2012; 80(3):199-205. https://doi.org/10.1016/j.jhin.2011.11.019 PMid:22306442 DOI: https://doi.org/10.1016/j.jhin.2011.11.019

Ali S, Muzslay M, Bruce M, Jeanes A, Moore G, Wilson AP. Efficacy of two hydrogen peroxide vapour aerial decontamination systems for enhanced disinfection of meticillin-resistant Staphylococcus aureus, Klebsiella pneumoniae and Clostridium difficile in single isolation rooms. J Hosp Infect. 2016; 93(1):70-7. https://doi.org/10.1016/j.jhin.2016.01.016 PMid:26944907 DOI: https://doi.org/10.1016/j.jhin.2016.01.016

Kümin D, Albert MG, Weber B, Summermatter K. The hitchhiker’s guide to hydrogen peroxide fumigation, Part 1: Introduction to hydrogen peroxide fumigation. Appl Biosaf. 2020; 25(4):214-24. DOI: https://doi.org/10.1177/1535676020921007

Kümin D, Albert MG, Summermatter K. Case Study: Room fumigation using aerosolized hydrogen peroxide-a versatile and economic fumigation method. Appl Biosaf. 2019; 24(4):200-6. DOI: https://doi.org/10.1177/1535676019887049

Cervantes Trejo A, Castañeda ID, Rodríguez AC, Andrade Carmona VR, Mercado MdPC, Vale LS, et al. Hydrogen peroxide as an adjuvant therapy for COVID-19: A case series of patients and caregivers in the Mexico city metropolitan area. Evid Based Complement Alternat Med. 2021; 2021:5592042. https://doi.org/10.1155/2021/5592042 PMid:34335827 DOI: https://doi.org/10.1155/2021/5592042

International Agency for Research on Cancer. Hydrogen Peroxide. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals To Humans: Allyl Compounds, Aldehydes, Epoxides and Peroxides. Vol. 36. Lyon: IARC; 1985. p. 285-314.

U.S. Food and Drug Administration. FDA Warns against Internal use of High-Strength Hydrogen Peroxide, 2006 August 7; 2021. Available from: https://www.medscape.com/viewarticle/541868. [Last accessed on 2021 Aug 07].

Mastrangelo G, Zanibellato R, Fedeli U, Fadda E, Lange JH. Exposure to hydrogen peroxide at TLV level does not induce lung function changes: A longitudinal study. Int J Environ Health Res. 2005; 15(4):313-7. DOI: https://doi.org/10.1080/09603120500156003

Occupational Safety and Health Administration. 29 CFR 1910.1000 Table Z-1-Table Z-1 Limits for Air Contaminants; 2017. Available from: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1000tablez1. [Last accessed on 2021 May 11].

Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action. J Antimicrob Chemother. 2012; 67(7):1589-96. PMid:22532463 DOI: https://doi.org/10.1093/jac/dks129

Unger-Bimczok B, Kottke V, Hertel C, Rauschnabel J. The influence of humidity, hydrogen peroxide concentration, and condensation on the inactivation of Geobacillus stearothermophilus spores with hydrogen peroxide vapor. J Pharm Innov. 2008; 3(2):123-33. DOI: https://doi.org/10.1007/s12247-008-9027-1

Imai K, Watanabe S, Oshima Y, Kokubo M, Akers J. A new approach to vapor hydrogen peroxide decontamination of isolators and cleanrooms. Pharm Eng. 2006; 26(3):96-104.

International Organization for Standardization. Sterilization of Health Care Products-Vocabulary of Terms Used in Sterilization and Related Equipment and Process Standards. Geneva, Switzerland: International Organization for Standardization; 2018.

U.S. Food and Drug Administration. Biological Indicator (BI) Premarket Notification [510(k)] Submissions; 2007. Available from: https://www.fda.gov/regulatory-information/searchfda-guidance-documents/biological-indicator-bi-premarketnotification-510k-submissions. [Last accessed on 2021 May 16].

Castro L, Lourenço F, Pinto T. Assessment of biological indicators in the validation of isolator decontamination with hydrogen peroxide. Rev Ciênc Farm Básica Apl. 2011; 32(3):335-9.

Kümin D, Albert MG, Weber B, Summermatter K. The Hitchhiker’s guide to hydrogen peroxide fumigation, Part 2: Verifying and validating hydrogen peroxide fumigation cycles. Appl Biosaf. 2021; 26(1):42-51. DOI: https://doi.org/10.1089/apb.21.921099

Vanhecke P, Sigwarth V, Moirandat C. A potent and safe H2O2 fumigation approach. PDA J Pharm Sci Technol. 2012; 66(4):354-70. https://doi.org/10.5731/pdajpst.2012.00870 PMid:22767884 DOI: https://doi.org/10.5731/pdajpst.2012.00870

US Environmental Protection Agency Office of Pesticide Programs. Protocol for Room Sterilization by Fogger Application; 2015. Available from: https://www.epa.gov/sites/production/files/2015-09/documents/room-sterilization.pdf. [Last accessed on 2021 May 16].

Andersen B, Rasch M, Hochlin K, Jensen FH, Wismar P, Fredriksen JE. Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J Hosp Infect. 2006; 62(2):149-55. https://doi.org/10.1016/j.jhin.2005.07.020 PMid:16337307 DOI: https://doi.org/10.1016/j.jhin.2005.07.020

Kostyuchenko S, Khan A, Volkov S, Giller H. UV disinfection in Moscow metro public transport systems. IUVA News. 2009; 11(1):16-23.

Klaus J, Gnirs P, Hölterhoff S, Wirtz A, Jeglitza M, Gaber W, et al. Disinfection of aircraft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2016; 59(12):1544-8. https://doi.org/10.1007/s00103-016-2460-2 PMid:27785522 DOI: https://doi.org/10.1007/s00103-016-2460-2

Lindsley WG, McClelland TL, Neu DT, Martin SB, Mead KR, Thewlis RE, et al. Ambulance disinfection using ultraviolet germicidal irradiation (UVGI): Effects of fixture location and surface reflectivity. J Occup Environ Hyg. 2018; 15(1):1-12. https://doi.org/10.1080/15459624.2017.1376067 PMid:29059039 DOI: https://doi.org/10.1080/15459624.2017.1376067

Roberts CG. Hydrogen peroxide vapor and aerosol room decontamination systems. Infect Control Hosp Epidemiol. 2012; 33(3):312; author reply 312-3. https://doi.org/10.1086/664043 PMid:22314074 DOI: https://doi.org/10.1086/664043

Downloads

Published

2021-09-10

How to Cite

1.
Arunwuttipong A, Jangtawee P, Vchirawongkwin V, Kangwansupamonkon W, Asavanant K, Ekgasit S. Public Buses Decontamination by Automated Hydrogen Peroxide Aerosolization System. Open Access Maced J Med Sci [Internet]. 2021 Sep. 10 [cited 2024 Nov. 23];9(E):847-56. Available from: https://oamjms.eu/index.php/mjms/article/view/6828

Issue

Section

Public Health Disease Control

Categories