Negative Correlation between Serum Brain-derived Neurotrophic Factor Levels and Obesity Predictor Markers and Inflammation Levels in Females with Obesity

Authors

  • Slamet Raharjo Department of Sports Science, Faculty of Sports Science, State University of Malang, Malang, Indonesia
  • Adi Pranoto Department of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0003-4080-9245
  • Purwo Sri Rejeki Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Ahmad Syahru Mubarok Harisman Department of Sports Science, Faculty of Sports Science, State University of Malang, Malang, Indonesia https://orcid.org/0000-0003-0319-3445
  • Yualita Putri Pamungkas Department of Public Health, Faculty of Sports Science, State University of Malang, Malang, Indonesia https://orcid.org/0000-0001-9223-6253
  • Olivia Andiana Department of Sports Science, Faculty of Sports Science, State University of Malang, Malang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.6840

Keywords:

Obesity, Brain-derived neurotrophic factor, Body mass index, Waist hip ratio, Interleukin-6, Tumor necrosis factor-α

Abstract

BACKGROUND: Obesity has been widely associated with structural and functional changes in the brain, whereas inflammation is one of the potential mechanisms involved in these changes.

OBJECTIVE: This study aims to prove the relationship between serum brain-derived neurotrophic factor (BDNF) levels and obesity predictor markers (body mass index and waist to hip ratio) and inflammation (interleukin-6 and Tumor Necrosis Factor-alpha) levels in females with obesity.

METHODS: This study used a cross-sectional study method using 33 females with obesity aged 19-23 years, body mass index (BMI) > 27.5 kg/m2, normal blood pressure, normal resting heart rate (RHR), normal hemoglobin (Hb), and fasting blood glucose (FBG) ≤ 100 mg/dL. The examination of serum BDNF, IL-6, and TNF-α levels using the Enzyme-Linked Immunosorbent Assay (ELISA) method. The data were analyzed using Pearson product-moment test with a significant levels p<0.05.

RESULTS: The results indicated that there is a negative correlation between serum BDNF levels and BMI (r = –0.759; p<0.001), WHR (r = –0.675; p<0.001), IL-6 levels (r = –0.530; p<0.001) and TNF-α levels (r = –0.561; p<0.001).

CONCLUSION: Based on the results of the study, there is a negative correlation between serum BDNF levels and BMI, waist to hip ratio, and inflammation (interleukin-6 and Tumor Necrosis Factor-alpha) levels in females with obesity. Further studies are needed to confirm the present findings.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. Obesity and overweight. Geneva: World Health Organization; 2020. Available from: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight. https://doi.org/10.1787/a47d0cd2-en [Last accessed on 2021 MayAQ1 ???]. DOI: https://doi.org/10.1787/a47d0cd2-en

Maria P, Evagelia S. Obesity disease. Health Sci J. 2009;3(3):132-8.

Wang C, Chan JS, Ren L, Yan JH. Obesity reduces cognitive and motor functions across the lifespan. Neural Plasticity. 2016;2016:2473081. https://doi.org/10.1155/2016/2473081 PMid:26881095 DOI: https://doi.org/10.1155/2016/2473081

Peeters A, Barendregt JJ, Willekens F, Mackenbach JP, Al Mamun A, Bonneux L, et al. Obesity in adulthood and its consequences for life expectancy: a life-table analysis. Ann Intern Med. 2003;138(1):24-32. https://doi.org/10.7326/0003-4819-138-1-200301070-00008. DOI: https://doi.org/10.7326/0003-4819-138-1-200301070-00008

Goossens GH. The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function. Obes Facts. 2017;10(3):207-15. https://doi.org/10.1159/000471488. DOI: https://doi.org/10.1159/000471488

Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635-43. https://doi.org/10.1038/35007508 PMid:10766250 DOI: https://doi.org/10.1038/35007508

Nota M, Vreeken D, Wiesmann M, Aarts EO, Hazebroek EJ, Kiliaan AJ. Obesity affects brain structure and function- rescue by bariatric surgery? Neurosci Biobehav Rev. 2020;108:646-57. https://doi.org/10.1016/j.neubiorev.2019.11.025 PMid:31794778 DOI: https://doi.org/10.1016/j.neubiorev.2019.11.025

Nguyen JC, Killcross AS, Jenkins TA. Obesity and cognitive decline: Role of inflammation and vascular changes. Front Neurosci. 2014;8:375. https://doi.org/10.3389/fnins.2014.00375 PMid:25477778 DOI: https://doi.org/10.3389/fnins.2014.00375

Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunology. 2011;11(2):98-107. https://doi.org/10.1038/nri2925 PMid:21233852 DOI: https://doi.org/10.1038/nri2925

Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010;2010:289645. https://doi.org/10.1155/2010/289645 Mid:20706689 DOI: https://doi.org/10.1155/2010/289645

Ugalde-Muñiz P, Fetter-Pruneda I, Navarro L, García E, Chavarría A. Chronic systemic inflammation exacerbates neurotoxicity in a Parkinson’s disease model. Oxid Med Cell Longev. 2020;2020:4807179. https://doi.org/10.1155/2020/4807179 PMid:32015787 DOI: https://doi.org/10.1155/2020/4807179

Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: The linking mechanism and the complications. Arch Med Sci. 2017;13(4):851-63. https://doi.org/10.5114/ aoms.2016.58928 PMid:28721154 DOI: https://doi.org/10.5114/aoms.2016.58928

Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R. Brain-derived neurotrophic factor: A bridge between inflammation and neuroplasticity. Front Cell Neurosci. 2014;8:430. https://doi.org/10.3389/fncel.2014.00430 Mid:25565964 DOI: https://doi.org/10.3389/fncel.2014.00430

Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG. Adipaging: Ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol. 2016;594(12):3187-207. https://doi.org/10.1113/JP271691 PMid:26926488 DOI: https://doi.org/10.1113/JP271691

Weinstein G, Beiser AS, Choi SH, Preis SR, Chen TC, Vorgas D, et al. Serum brain-derived neurotrophic factor and the risk for dementia: The Framingham heart study. JAMA Neurol. 2014;71(1):55-61. https://doi.org/10.1001/jamaneurol.2013.4781 PMid:24276217 DOI: https://doi.org/10.1001/jamaneurol.2013.4781

Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64(2):238-58. https://doi.org/10.1124/pr.111.005108 Mid:22407616 DOI: https://doi.org/10.1124/pr.111.005108

Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory?. Front Mol Neurosci. 2010;3:1. https://doi.org/10.3389/neuro.02.001.2010 PMid:20162032 DOI: https://doi.org/10.3389/neuro.02.001.2010

Komulainen P, Pedersen M, Hänninen T, Bruunsgaard H, Lakka TA, Kivipelto M, et al. BDNF is a novel marker of cognitive function in ageing female: The DR’s EXTRA study. Neurobiol Learn Memory. 2008;90(4):596-603. https://doi.org/10.1016/j.nlm.2008.07.014 PMid:18707012 DOI: https://doi.org/10.1016/j.nlm.2008.07.014

Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors (Chur, Switzerland). 2004;22(3):123-31. https://doi.org/10.1080/08977190410001723308 PMid:15518235 DOI: https://doi.org/10.1080/08977190410001723308

Yamada K, Mizuno M, Nabeshima T. Role for brain-derived neurotrophic factor in learning and memory. Life Sci. 2002;70(7):735-44. https://doi.org/10.1016/ s0024-3205(01)01461-8 PMid:11833737 DOI: https://doi.org/10.1016/S0024-3205(01)01461-8

Holsinger RM, Schnarr J, Henry P, Castelo VT, Fahnestock M. Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer’s disease. Brain research. Mol Brain Res. 2000;76(2):347-54. https://doi.org/10.1016/s0169-328x(00)00023-1 PMid:10762711 DOI: https://doi.org/10.1016/S0169-328X(00)00023-1

Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron. 1991;7(5):695-702. https://doi.org/10.1016/0896-6273(91)90273-3 PMid:1742020 DOI: https://doi.org/10.1016/0896-6273(91)90273-3

Ieraci A, Beggiato S, Ferraro L, Barbieri SS, Popoli M. Kynurenine pathway is altered in BDNF Val66Met knock-in mice: Effect of physical exercise. Brain Behav Immunity. 2020;89:440-50. https://doi.org/10.1016/j.bbi.2020.07.031 DOI: https://doi.org/10.1016/j.bbi.2020.07.031

Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci. 2018;19(11):3650. https://doi.org/10.3390/ ijms19113650 PMid:30463271 DOI: https://doi.org/10.3390/ijms19113650

Konishi K, Cherkerzian S, Aroner S, Jacobs EG, Rentz DM, Remington A, et al. Impact of BDNF and sex on maintaining intact memory function in early midlife. Neurobiol Aging. 2020;88:137-49. https://doi.org/10.1016/j.neurobiolaging.2019.12.014 DOI: https://doi.org/10.1016/j.neurobiolaging.2019.12.014

El-Alameey IR, Ahmed HH, Abushady MM. Role of lifestyle intervention program in regulating brain derived neurotrophic factor in obese children with metabolic syndrome components. Biomed Pharmacol J. 2019;12(3):1317-28. DOI: https://doi.org/10.13005/bpj/1760

Sandrini L, Di Minno A, Amadio P, Ieraci A, Tremoli E, Barbieri SS. Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: Systematic review of literature and meta-analysis. Int J Mol Sci. 2018;19(8):2281. https://doi.org/10.3390/ijms19082281 PMid:30081509 DOI: https://doi.org/10.3390/ijms19082281

Goltz A, Janowitz D, Hannemann A, Nauck M, Hoffmann J, Seyfart T, et al. Association of brain-derived neurotrophic factor and Vitamin D with depression and obesity: A population-based study. Neuropsychobiology. 2017;76(4):171-81. https://doi.org/10.1159/000489864 PMid:29920493 DOI: https://doi.org/10.1159/000489864

Patas K, Penninx BW, Bus BA, Vogelzangs N, Molendijk ML, Elzinga BM, et al. Association between serum brain-derived neurotrophic factor and plasma interleukin-6 in major depressive disorder with melancholic features. Brain Behav Immunity. 2014;36:71-9. https://doi.org/10.1016/j.bbi.2013.10.007 PMid:24140302 DOI: https://doi.org/10.1016/j.bbi.2013.10.007

Zhang XY, Tan YL, Chen DC, Tan SP, Yang FD, Wu HE, et al. Interaction of BDNF with cytokines in chronic schizophrenia. Brain Behav Immunity. 2016;51:169-75. https://doi.org/10.1016/j.bbi.2015.09.014 DOI: https://doi.org/10.1016/j.bbi.2015.09.014

Nimptsch K, Konigorski S, Pischon T. Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism. 2019;92:61-70. https://doi.org/10.1016/j.metabol.2018.12.006 PMid:30586573 DOI: https://doi.org/10.1016/j.metabol.2018.12.006

Si J, Zhang H, Zhu L, Chen A. The relationship between overweight/obesity and executive control in college students: The mediating effect of BDNF and 5-HT. Life (Basel, Switzerland). 2021;11(4):313. https://doi.org/10.3390/life11040313 PMid:33916706 DOI: https://doi.org/10.3390/life11040313

Yang F, Wang K, Du X, Deng H, Wu HE, Yin G, et al. Sex difference in the association of body mass index and BDNF levels in Chinese patients with chronic schizophrenia. Psychopharmacology. 2019;236(2):753-62. https://doi.org/10.1007/s00213-018-5107-1 DOI: https://doi.org/10.1007/s00213-018-5107-1

Jung SH, Kim J, Davis JM, Blair SN, Cho HC. Association among basal serum BDNF, cardiorespiratory fitness and cardiovascular disease risk factors in untrained healthy Korean men. Eur J Appl Physiol. 2011;111(2):303-11. https://doi.org/10.1007/ s00421-010-1658-5 PMid:20878177 DOI: https://doi.org/10.1007/s00421-010-1658-5

Zhang XY, Zhou DF, Wu GY, Cao LY, Tan YL, Haile CN, et al. BDNF levels and genotype are associated with antipsychotic-induced weight gain in patients with chronic schizophrenia. Neuropsychopharmacology. 2008;33(9):2200-5. https://doi.org/10.1038/sj.npp.1301619 PMid:17987059 DOI: https://doi.org/10.1038/sj.npp.1301619

Alomari MA, Khabour OF, Alawneh K, Alzoubi KH, Maikano AB. The importance of physical fitness for the relationship of BDNF with obesity measures in young normal-weight adults. Heliyon. 2020;6(3):e03490. https://doi.org/10.1016/j.heliyon.2020. e03490 PMid:32154423 DOI: https://doi.org/10.1016/j.heliyon.2020.e03490

El-Gharbawy AH, Adler-Wailes DC, Mirch MC, Theim KR, Ranzenhofer L, Tanofsky-Kraff M, et al. Serum brain-derived neurotrophic factor concentrations in lean and overweight children and adolescents. J Clin Endocrinol Metab. 2006;91(9):3548-52. https://doi.org/10.1210/jc.2006-0658 PMid:16787984 DOI: https://doi.org/10.1210/jc.2006-0658

Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6(7):736-42. https://doi.org/10.1038/nn1073 PMid:12796784 DOI: https://doi.org/10.1038/nn1073

Sui SX, Pasco JA. Obesity and brain function: The brain-body crosstalk. Medicina (Kaunas, Lithuania). 2020;56(10):499. https://doi.org/10.3390/medicina56100499 PMid:32987813 DOI: https://doi.org/10.3390/medicina56100499

Lee SS, Yoo JH, Kang S, Woo JH, Shin KO, Kim KB, et al. The effects of 12 weeks regular aerobic exercise on brain-derived neurotrophic factor and inflammatory factors in juvenile obesity and Type 2 diabetes mellitus. J Phys Ther Sci. 2014;26(8):1199-204. https://doi.org/10.1589/jpts.26.1199 PMid:25202180 DOI: https://doi.org/10.1589/jpts.26.1199

Roh HT, So WY. The effects of aerobic exercise training on oxidant-antioxidant balance, neurotrophic factor levels, and blood-brain barrier function in obese and non-obese men. J Sport Health Sci. 2017;6(4):447-53. https://doi.org/10.1016/j. jshs.2016.07.006 PMid:30356625 DOI: https://doi.org/10.1016/j.jshs.2016.07.006

Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta. Molecular basis of disease, 2017;1863(5):1037-45. https://doi.org/10.1016/j.bbadis.2016.04.017 PMid:27156888 DOI: https://doi.org/10.1016/j.bbadis.2016.04.017

Downloads

Published

2021-09-30

How to Cite

1.
Raharjo S, Pranoto A, Rejeki PS, Harisman ASM, Pamungkas YP, Andiana O. Negative Correlation between Serum Brain-derived Neurotrophic Factor Levels and Obesity Predictor Markers and Inflammation Levels in Females with Obesity. Open Access Maced J Med Sci [Internet]. 2021 Sep. 30 [cited 2022 Jan. 24];9(B):1021-6. Available from: https://oamjms.eu/index.php/mjms/article/view/6840