Impact of Climate Variability and Incidence on Dengue Hemorrhagic Fever in Palembang City, South Sumatra, Indonesia
DOI:
https://doi.org/10.3889/oamjms.2021.6853Keywords:
Dengue hemorrhagic fever, Rainfall, Number of rainy days, Temperature, HumidityAbstract
Dengue hemorrhagic fever (DHF) is a dengue virus infection transmitted by Aedes spp. Climate has a profound influence on mosquito breeding. Palembang has the highest rate of DHF in South Sumatra. This study aimed to investigate the relationship between the components of climate factors and the incidence of DHF in Palembang. This study was cross-sectional, with an observational analytic approach. The Palembang City Health Office compiled data on DHF incidence rates from 2016 to 2020. Climatic factor data (rainfall, number of rainy days, temperature, humidity, wind speed, sun irradiance) were collected from the Climatology Station Class I Palembang - BMKG Station and Task Force that same year. The Spearman test was used to conduct the correlation test. Between 2016 and 2020, there were 3,398 DHF patients. From January to May, DHF increased. There was a significant correlation between rainfall (r = 0.320; p = 0.005), number of rainy days (r = 0.295; p = 0.020), temperature (r = 0.371; p = 0.040), and humidity (r = 0.221; p = 0.024), wind speed (r= 0.76; p = 0.492), and sunlight (r = 0.008; p = 0.865). Rainfall, the number of rainy days, and temperature were three climatic factors determining the increase in dengue incidence in Palembang.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. http://doi.org/10.1038/nature12060 PMid:23563266 DOI: https://doi.org/10.1038/nature12060
Bowman LR, Runge-Ranzinger S, McCall PJ. Assessing the relationship between vector indices and dengue transmission: A systematic review of the evidence. PLoS Negl Trop Dis. 2014;8(5):e2848. http://doi.org/10.1371/journal.pntd.0002848 PMid:24810901 DOI: https://doi.org/10.1371/journal.pntd.0002848
Guy B, Lang J, Saville M, Jackson N. Vaccination against dengue: Challenges and current developments. Ann Rev Med. 2016;67:387-404. http://doi.org/10.1146/annurev-med-091014-090848 PMid:26515983 DOI: https://doi.org/10.1146/annurev-med-091014-090848
Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N Engl J Med. 2018;379:327-40. http://doi.org/10.1056/nejmoa1800820 PMid:29897841 DOI: https://doi.org/10.1056/NEJMoa1800820
Bowman LR, Donegan S, Mccall PJ. Is dengue vector control deficient in effectiveness or evidence ?: Systematic review and meta-analysis. PLoS Negl Trop Dis. 2016;10(3):1-24. http://doi.org/10.1371/journal.pntd.0004551 PMid:26986468 DOI: https://doi.org/10.1371/journal.pntd.0004551
Campbell KM, Lin CD, Iamsirithaworn S, Scott TW. The complex relationship between weather and dengue virus transmission in Thailand. Am J Trop Med Hyg. 2013;89(6):1066-80. http://doi.org/10.4269/ajtmh.13-0321 PMid:23958906 DOI: https://doi.org/10.4269/ajtmh.13-0321
Johansson MA, Cummings DA, Glass GE. Multiyear climate variability and dengue El Niño Southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: A longitudinal data analysis. PLoS Med. 2009;6(11):11-2. http://doi.org/10.1371/journal.pmed.1000168 PMid:19918363 DOI: https://doi.org/10.1371/journal.pmed.1000168
Stoddard ST, Wearing HJ, Reiner RC Jr., Morrison AC, Astete H, Vilcarromero S, et al. Long-term and seasonal dynamics of dengue in Iquitos, Peru. PLoS Negl Trop Dis. 2014;8(7):e3003. http://doi.org/10.1371/journal.pntd.0003003 PMid:25033412 DOI: https://doi.org/10.1371/journal.pntd.0003003
Hamid PH, Prastowo J, Widyasari A, Taubert A, Hermosilla C. Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia. Parasit Vectors. 2017;10(1):1-9. http://doi.org/10.1186/s13071-017-2215-4 DOI: https://doi.org/10.1186/s13071-017-2215-4
Erlanger T, Keiser J, Utzinger J. Effect of dengue vector control interventions on entomological parameters in developing countries: A systematic review and metaanalysis. Med Vet Entomol. 2008;22(3):203-21. http://doi.org/10.1111/j.1365-2915.2008.00740.x PMid:18816269 DOI: https://doi.org/10.1111/j.1365-2915.2008.00740.x
Perich MJ, Davila G, Turner A, Garcia A, Nelson M. Behavior of resting Aedes aegypti (Culicidae: Diptera) and its relation to ultra-low volume adulticide efficacy in Panama City, Panama. J Med Entomol. 2000;37(4):541-6. http://doi.org/10.1603/0022-2585-37.4.541 PMid:10916294 DOI: https://doi.org/10.1603/0022-2585-37.4.541
Gurtler RE, Garelli FM, Coto HD. Effects of a five-year citywide intervention program to control Aedes aegypti and prevent Dengue outbreaks in Northern Argentina. PLoS Negl Trop Dis. 2009;3(4):e427. http://doi.org/10.1371/journal.pntd.0000427 DOI: https://doi.org/10.1371/journal.pntd.0000427
Chadee DD. Impact of pre-seasonal focal treatment on population densities of the mosquito Aedes aegypti in Trinidad, West Indies: A preliminary study. Acta Trop. 2009;109:236-40. http://doi.org/10.1016/j.actatropica.2008.12.001 PMid:19114025 DOI: https://doi.org/10.1016/j.actatropica.2008.12.001
Esu E, Lenhart A, Smith L, Horstick O. Effectiveness of peridomestic space spraying with insecticide on dengue transmission: Systematic review. Trop Med Int Health. 2010;15(5):619-31. http://doi.org/10.1111/j.1365-3156.2010.02489.x PMid:20214764 DOI: https://doi.org/10.1111/j.1365-3156.2010.02489.x
George L, Lenhart A, Toledo J, Lazaro A, Han WW, Velayudhan R, et al. Community-effectiveness of temephos for dengue vector control: A systematic literature review. PLoS Negl Trop Dis. 2015;9(9):e0004006. http://doi.org/10.1371/journal.pntd.0004006 PMid:26371470 DOI: https://doi.org/10.1371/journal.pntd.0004006
Oki M, Sunahara T, Hashizume M, Yamamoto T. Optimal timing of Insecticide fogging to minimize dengue cases: Modeling dengue transmission among various seasonalities and transmission intensities. PLoS Negl Trop Dis. 2011;5(10):e1367. http://doi.org/10.1371/journal.pntd.0001367 PMid:22039560 DOI: https://doi.org/10.1371/journal.pntd.0001367
Corwin AL, Larasati RP, Bangs MJ, Wuryadi S, Arjoso S, Sukri N, et al. Epidemic dengue transmission in Southern Sumatra, Indonesia. Trans R Soc Trop Med Hyg. 2001;95(3):257-65. http://doi.org/10.1016/S0035-9203(01)90229-9 PMid:11490992 DOI: https://doi.org/10.1016/S0035-9203(01)90229-9
Thai KT, Cazelles B, Van Nguyen N, Vo LT, Boni MF, Farrar J, et al. Dengue dynamics in binh thuan province, Southern Vietnam: Periodicity, synchronicity and climate variability. PLoS Negl Trop Dis. 2010;4(7):1-8. http://doi.org/10.1371/journal.pntd.0000747 PMid:20644621 DOI: https://doi.org/10.1371/journal.pntd.0000747
Priyadi P, Indriyati E, Damanik H. In the area of one Ulu publik health center, Seberang Ulu I district Palembang city in 2020. J Dunia Kesmas. 2020;9(4):449-56. DOI: https://doi.org/10.33024/jdk.v9i4.3298
Sari DE. Knowledge, attitude and education with prevention of Dengue fever using the principle of draining, closing and reusing. Citra Delima J Ilm STIKES Citra Delima Bangka Belitung. 2020;3(2):163-70. DOI: https://doi.org/10.33862/citradelima.v3i2.84
Anwar C, Lavita RA, Handayani D. Identification and distribution of Aedes Sp. as a vector of dengue hemorrhagic fever in several districts in South Sumatra. MKS. 2014;46(2):111-7.
Wurisastuti T, Sitorus H, Oktavia S. Relationship of community behavior with cases of dengue fever in the city of Palembang South Sumatera. Spirakel. 20179(1):34-40. http://doi.org/10.22435/spirakel.v8i2.7383
Benedum CM, Seidahmed OM, Eltahir EA, Markuzon N. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS Negl Trop Dis. 2018;12(12):e0006935. http://doi.org/10.1371/journal.pntd.0006935 PMid:30521523 DOI: https://doi.org/10.1371/journal.pntd.0006935
Nosrat C, Altamirano J, Anyamba A, Caldwell JM, Damoah R, Mutuku F, et al. Impact of recent climate extremes on mosquitoborne disease transmission in Kenya. 2021;15(3):e0009182. http://doi.org/10.1371/journal.pntd.0009182 PMid:33735293 DOI: https://doi.org/10.1371/journal.pntd.0009182
Nair DG, Aravind NP. Association between rainfall and the prevalence of clinical cases of dengue in Thiruvananthapuram district, India. Int J Mosquito Res. 2020;2020:488. http://doi.org/10.22271/23487941.2020.v7.i6a.488 DOI: https://doi.org/10.22271/23487941.2020.v7.i6a.488
Zafra B. Predicting dengue in the Philippines using artificial neural network. medRxiv. 2020;2020:8-13. http://doi.org/10.1101/2020.10.08.20209718 DOI: https://doi.org/10.1101/2020.10.08.20209718
Hooshyar M, Wagner CE, Baker RE, Yang W, Vecchi GA, Metcalf CJ, et al. Dengue seasonality and non-monotonic response to moisture: A model-data analysis of Sri lanka incidence from 2011 to 2016. arXiv. 2020;2020:2847.
Yuan HY, Liang J, Lin PS, Sucipto K, Tsegaye MM, Wen TH, et al. The effects of seasonal climate variability on dengue annual incidence in Hong Kong: A modelling study. Sci Rep. 2020;10(1):1-11. http://doi.org/10.1038/s41598-020-60309-7 DOI: https://doi.org/10.1038/s41598-020-60309-7
Lai YH. The climatic factors affecting dengue fever outbreaks in Southern Taiwan: An application of symbolic data analysis. Biomed Eng Online. 2018;17(s2):148. http://doi.org/10.1186/s12938-018-0575-4 PMid:30396346 DOI: https://doi.org/10.1186/s12938-018-0575-4
Muurlink OT, Stephenson P, Islam MZ, Taylor-Robinson AW. Long-term predictors of dengue outbreaks in Bangladesh: A data mining approach. Infect Dis Model. 2018;3:322-30. http://doi.org/10.1016/j.idm.2018.11.004 DOI: https://doi.org/10.1016/j.idm.2018.11.004
Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, et al. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors. 2013;6:351. PMid:24330720 DOI: https://doi.org/10.1186/1756-3305-6-351
Karunarathna KA, Sriranganesan J. Impact of climatic factors on dengue incidences in eastern province, Sri Lanka. Int J Trop Dis Health. 2019;40(3):1-19. http://doi.org/10.9734/IJTDH/2019/v40i330228 DOI: https://doi.org/10.9734/ijtdh/2019/v40i330228
Shimmei K, Nakamura T, Ng CF, Hashizume M, Murakami Y, Maruyama A, et al. Association between seasonal influenza and absolute humidity: Time-series analysis with daily surveillance data in Japan. Sci Rep. 2020;10(1):7764. http://doi.org/10.1038/s41598-020-63712-2 PMid:32385282 DOI: https://doi.org/10.1038/s41598-020-63712-2
Acharya BK, Cao C, Xu M, Khanal L, Naeem S, Pandit S. Present and future of dengue fever in Nepal: Mapping climatic suitability by ecological niche model. Int J Environ Res Public Health. 2018;15(187):1-15. http://doi.org/10.3390/ijerph15020187 PMid:29360797 DOI: https://doi.org/10.3390/ijerph15020187
Morgan J, Strode C, Salcedo-Sora JE. Climatic and socioeconomic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Negl Trop Dis. 2021;15(3):1-29. http://doi.org/10.1371/journal.pntd.0009259 PMid:33705409 DOI: https://doi.org/10.1371/journal.pntd.0009259
Kamiya T, Greischar MA, Wadhawan K, Gilbert B, Paaijmans K, Mideo N. Temperature-dependent variation in the extrinsic incubation period elevates the risk of vector-borne disease emergence. Epidemics. 2020;30:100382. http://doi.org/10.1016/j.epidem.2019.100382 PMid:32004794 DOI: https://doi.org/10.1016/j.epidem.2019.100382
Drakou K, Nikolaou T, Vasquez M, Petric D, Michaelakis A, Kapranas A, et al. The effect of weather variables on mosquito activity: A snapshot of the main point of entry of Cyprus. Int J Environ Res Public Health. 2020;17(1403):1-10. http://doi.org/10.3390/ijerph17041403 PMid:32098137 DOI: https://doi.org/10.3390/ijerph17041403
Charette M, Berrang-Ford L, Coomes O, Llanos-Cuentas EA, Cárcamo C, Kulkarni M, et al. Dengue incidence and sociodemographic conditions in Pucallpa, Peruvian Amazon: What role for modification of the dengue-temperature relationship? Am J Trop Med Hyg. 2020;102(1):180-90. http://doi.org/10.4269/ajtmh.19-0033 PMid:31701852 DOI: https://doi.org/10.4269/ajtmh.19-0033
Jia P, Liang L, Tan X, Chen J, Chen X. Potential effects of heat waves on the population dynamics of the dengue mosquito Aedes albopictus. PLoS Negl Trop Dis. 2019;13(7):e0007528. http://doi.org/10.1371/journal.pntd.0007528 PMid:31276467 DOI: https://doi.org/10.1371/journal.pntd.0007528
Cheng J, Bambrick H, Yakob L, Devine G, Frentiu FD, Toan DT, et al. Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. PLoS Negl Trop Dis. 2020;14(1):1-15. http://doi.org/10.1371/journal.pntd.0007997 DOI: https://doi.org/10.1371/journal.pntd.0007997
Panggabean M, Siahaan L, Panggabean YC. Relationship of presence larvaes aedes aegypti in the water containers with dengue hemorrhagic fever in the Sei Kera Hilir 1 village sub-district Medan Perjuangan Medan city. J Phys Conf Ser. 2019;1317(1):3-8. http://doi.org/10.1088/1742-6596/1317/1/012104 DOI: https://doi.org/10.1088/1742-6596/1317/1/012104
Kusnoputranto H, Sintorini MM, Utomo SW, Aliyyah N, Sinaga ER, Pratiwi OA. Transmission of dengue hemorrhagic fever and climate variability in Jakarta. IOP Conf Ser Earth Environ Sci. 2019;314:012071. http://doi.org/10.1088/1755-1315/314/1/012071 DOI: https://doi.org/10.1088/1755-1315/314/1/012071
Husnina Z, Clements AC, Wangdi K. Forest cover and climate as potential drivers for dengue fever in Sumatra and Kalimantan 2006-2016: A spatiotemporal analysis. Trop Med Int Health. 2019;24(7):888-98. http://doi.org/10.1111/tmi.13248 PMid:31081162 DOI: https://doi.org/10.1111/tmi.13248
Astuti EP, Dhewantara PW, Prasetyowati H, Ipa M, Herawati C, Hendrayana K. Paediatric dengue infection in Cirebon, Indonesia: A temporal and spatial analysis of notified dengue incidence to inform surveillance. Parasit Vectors. 2019;186:1-12. http://doi.org/10.1186/s13071-019-3446-3 DOI: https://doi.org/10.1186/s13071-019-3446-3
Seah A, Aik J, Ng LC, Tam CC. The effects of maximum ambient temperature and heatwaves on dengue infections in the tropical city-state of Singapore a time series analysis. Sci Total Environ. 2021;775:145117. http://doi.org/10.1016/j.scitotenv.2021.145117 PMid:33618312 DOI: https://doi.org/10.1016/j.scitotenv.2021.145117
Pol SS, Rajderkar SS, Dhabekar PD, Gokhe SS. Effect of climatic factors like rainfall, humidity and temperature on the dengue cases in the metropolitan city of Maharashtra. Int J Community Med Public Health. 2021;8(2):672. http://doi.org/10.18203/2394-6040.ijcmph20210220 DOI: https://doi.org/10.18203/2394-6040.ijcmph20210220
Zhang Y, Riera J, Ostrow K, Siddiqui S, de Silva H, Sarkar S, et al. Modeling the relative role of human mobility, land-use and climate factors on dengue outbreak emergence in Sri Lanka. 2020;20:649. DOI: https://doi.org/10.1186/s12879-020-05369-w
Nguyen LT, Le HX, Nguyen DT, Ho HQ, Chuang TW. Impact of climate variability and abundance of mosquitoes on dengue transmission in central Vietnam. Int J Environ Res Public Health. 2020;17(7):2453. http://doi.org/10.3390/ijerph17072453 PMid:32260252 DOI: https://doi.org/10.3390/ijerph17072453
Tran BL, Tseng WC, Chen CC, Liao SY. Estimating the threshold effects of climate on dengue: A case study of Taiwan. Int J Environ Res Public Health. 2020;17(4):1-17. http://doi.org/10.3390/ijerph17041392 PMid:32098179 DOI: https://doi.org/10.3390/ijerph17041392
Salim MF, Syairaji M. Time-series Analysis of Climate Change Effect on Increasing of Dengue Hemorrhagic Fever (DHF) Case with Geographic Information System Approach in Yogyakarta, Indonesia. Vol. 2. In: International Proceedings the 2nd International Scientific Meeting on Health Information Management 2020; 2020. p. 248-56.
Adnan RA, Ramli MF, Othman HF, Asha’ri ZH. Implication of climatic factors on dengue fever in urban area: Case study in 2012-2016. EnvironmentAsia. 2020;13(3):89-102. http://doi.org/10.14456/ea.2020.45
Haryanto B. Dengue hemorrhagic fever vulnerability to climate in Indonesia: Assessment, projection and mapping. In: International Conference on Innovative Trends in Multidiscplinary Academic Research (ITMAR); 2014. p. 20-1. http://doi.org/10.1289/isee.2014.p2-342 DOI: https://doi.org/10.1289/isee.2014.P2-342
Kasman K, Ishak NI, Hastutiek P, Suprihati E, Mallongi A. Identification of active compounds of ethanol extract of citrus amblycarpa leaves by analysis of thin-layer chromatography and gas chromatography-mass spectrometry as bioinsecticide candidates for mosquitoes. Open Access Maced J Med Sci. 2020;8(T2):1-6. http://doi.org/10.3889/OAMJMS.2020.5207 DOI: https://doi.org/10.3889/oamjms.2020.5207
Fuadiyah EA, Widawati M. Climate factors are affecting dengue hemorrhagic fever (DHF) case in Cimahi of 2004-2013. Spirakel. 2018;10(2):86-96.
Selvarajoo S, Liew JW, Tan W, Lim XY, Refai WF, Zaki RA, Sethi N, et al. Knowledge, attitude and practice on dengue prevention and dengue seroprevalence in a dengue hotspot in Malaysia: A cross-sectional study. Sci Rep. 2020;10(1):1-13. http://doi.org/10.1038/s41598-020-66212-5 DOI: https://doi.org/10.1038/s41598-020-66212-5
Sari TW, Putri R. Mosquito breeding place eradication and dengue hemorrhagic fever event in Payung Sekaki health center Pekanbaru city, a case control study. J Epidemiol Kesehat Indones. 2020;3(2):55-60. http://doi.org/10.7454/epidkes.v3i2.1781 DOI: https://doi.org/10.7454/epidkes.v3i2.1781
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Minarti Rubel, Chairil Anwar, Irfanuddin Irfanuddin, Chandra Irsan, Ramzi Amin, Ahmad Ghiffari (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0