Association of Vitamin D Receptor Polymorphism (rs2228570, rs1544410, rs7975232, and rs731236) and Macrophage Migration Inhibitory Factor -173 G/C (rs755622) with the Susceptibility of Active Pulmonary Tuberculosis in Makassar, Indonesia
DOI:
https://doi.org/10.3889/oamjms.2021.6859Keywords:
Vitamin D receptor, Migration inhibitory factor, Polymorphism, Active tuberculosis, Interferon-gamma release assayAbstract
BACKGROUND: The study of Vitamin D Receptor (VDR) and Macrophage Migration Inhibitory Factor (MIF) polymorphisms, associated with active pulmonary tuberculosis (ATB) presents varying results.
AIMS: This study aimed to investigate the association between VDR rs2228570, rs1544410, rs7975232, rs731236 and MIF -173 G/C (rs755622) single nucleotide polymorphism (SNP), with susceptibility of developing ATB, and positivity of Interferon Gamma Release Assay (IGRA) results (in household contact).
METHODS AND MATERIAL: This study involved 83 ATB and 73 household contacts in Makassar. We checked IGRA based on ELISA in household contacts by using QuantiFERON TB Gold Plus test, and we found that 61.64% (n = 45) of household contacts had positive IGRA. Polymorphism examination was carried out by Sanger sequencing.
RESULTS: VDR rs2228570 T/T and T/C-T/T were significantly associated with higher risk of active tuberculosis. VDR rs7975232 G/G genotype was associated with an increased risk of developing active TB compared to T/T-T/G. Haplotype analysis of VDR rs2228570, rs1544410, rs7975232, rs731236 and combination with MIF rs755622 demonstrated that TGGTG was observed to have a higher risk of tuberculosis.
CONCLUSIONS:
The combination of VDR and MIF variants may contribute to the susceptibility of active tuberculosis disease.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
World Health Organization. Global Tuberculosis Report 2020. Geneva: World Health Organization, 2020. Available from: https://www.apps.who.int/iris/rest/bitstreams/1312164/retrieve [Last accessed on 2021 Jul 17].
World Health Organization. Guidelines on the Management of Latent Tuberculosis Infection; 2015. Available from: https://apps.who.int/iris/bitstream/10665/136471/1/9789241548908_eng.pdf [Last accessed on 2021 Jul 16].
Moller M, Hoal EG. Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis. 2010;90(2):71-83. https://doi.org/10.1016/j.tube.2010.02.002 PMid:20206579 DOI: https://doi.org/10.1016/j.tube.2010.02.002
Aravindan PP. Host genetics and tuberculosis: Theory of genetic polymorphism and tuberculosis. Lung India. 2019;36(3):244-52. https://doi.org/10.4103/lungindia.lungindia_146_15 PMid:31031349
van Tong H, Velavan TP, Thye T, Meyer CG. Human genetic factors in tuberculosis: An update. Trop Med Int Health. 2017;22(9):1063-1071. https://doi.org/10.1111/tmi.12923 Mid:28685916 DOI: https://doi.org/10.1111/tmi.12923
Harishankar M, Selvaraj P, Bethunaickan R. Influence of genetic polymorphism towards pulmonary tuberculosis susceptibility. Front Med. 2018;5:213. https://doi.org/10.3389/fmed.2018.00213 PMid:30167433 DOI: https://doi.org/10.3389/fmed.2018.00213
Leandro AC, Rocha MA, Cardoso CS, Bonecini-Almeida MG. Genetic polymorphisms in Vitamin D receptor, Vitamin D-binding protein, toll-like receptor 2, nitric oxide synthase 2, and interferon-γ _genes and its association with susceptibility to tuberculosis. Braz J Med Biol Res. 2009;42(4):312-22. https://doi.org/10.1590/s0100-879x2009000400002 PMid:19330258 DOI: https://doi.org/10.1590/S0100-879X2009000400002
Pike JW, Meyer MB. The Vitamin D receptor: New paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D3. Rheum Dis Clin. 2012;38(1):13-27. https://doi.org/10.1016%2Fj.ecl.2010.02.007 PMid:20511050 DOI: https://doi.org/10.1016/j.rdc.2012.03.004
Gao L, Tao Y, Zhang L, Jin Q. Vitamin D receptor genetic polymorphisms and tuberculosis: Updated systematic review and meta-analysis. Int J Tuberc Lung Dis 2010;14(1):15-23. PMid:20003690
Medapati RV, Suvvari S, Godi S, Gangisetti P. NRAMP1 and VDR gene polymorphisms in susceptibility to pulmonary tuberculosis among Andhra Pradesh population in India: A case-control study. BMC Pulm Med. 2017;17(1):89. https://doi.org/10.1186/s12890-017-0431-5 PMid:28583097 DOI: https://doi.org/10.1186/s12890-017-0431-5
Zhang Y, Zhu H, Yang X, Guo S, Liang Q, Lu Y, et al. Serum Vitamin D level and Vitamin D receptor genotypes may be associated with tuberculosis clinical characteristics A case-control study. Medicine (Baltimore). 2018;97(30):e11732. https://doi.org/10.1097/MD.0000000000011732 PMid:30045341 DOI: https://doi.org/10.1097/MD.0000000000011732
Lue H, Kleemann R, Calandra T, Roger T, Bernhagen J. Macrophage migration inhibitory factor (MIF): Mechanisms of action and role in disease. Microbes Infect. 2002;4(4):449-60. https://doi.org/10.1016/s1286-4579(02)01560-5 PMid:11932196 DOI: https://doi.org/10.1016/S1286-4579(02)01560-5
Kok T, Wasiel AA, Cool RH, Melgert BN, Poelarends GJ, Dekker FJ. Small-molecule inhibitors of macrophage migration inhibitory factor (MIF) as an emerging class of therapeutics for immune disorders. Drug Discov Today. 2018;23(11):1910-8. https://doi.org/10.1016/j.drudis.2018.06.017 PMid:29936245 DOI: https://doi.org/10.1016/j.drudis.2018.06.017
Johnson AD, Zhang Y, Papp AC, Pinsonneault JK, Lim JE, Saffen D, et al. Polymorphisms affecting gene transcription and mRNA processing in pharmacogenetic candidate genes: Detection through allelic expression imbalance in human target tissues. Pharm Genom. 2008;18(9):781-91. https://doi.org/10.1097/fpc.0b013e3283050107 PMid:18698231 DOI: https://doi.org/10.1097/FPC.0b013e3283050107
Robert F, Pelletier J. Exploring the impact of single-nucleotide polymorphisms on translation. Front Genet. 2018;9:1-11. https://doi.org/10.3389/fgene.2018.00507 PMid:30425729 DOI: https://doi.org/10.3389/fgene.2018.00507
Lee YH, Song GG. Vitamin D receptor gene FokI, TaqI, BsmI, and ApaI polymorphisms and susceptibility to pulmonary tuberculosis: A meta-analysis. Genet Mol Res. 2015;14(3):9118-29. https://doi.org/10.4238/2015.august.7.21 PMid:26345844 DOI: https://doi.org/10.4238/2015.August.7.21
Xu X, Shen M. Associations between Vitamin D receptor genetic variants and tuberculosis: A meta-analysis. Innate Immun. 2019;25(5):305-13. https://doi.org/10.1177/1753425919842643 PMid:30987490 DOI: https://doi.org/10.1177/1753425919842643
Milano M, Moraes MO, Rodenbusch R, Carvalho CX, Delcroix M, Gehlen M, Mousquer G, et al. Macrophage migration inhibitory factor -173 G>C single nucleotide polymorphism and its association with active pulmonary tuberculosis. PLoS One. 2020;15(6):e0234565. https://doi.org/10.1371/journal. pone.0234565 PMid:32525926 DOI: https://doi.org/10.1371/journal.pone.0234565
Go LM, Sa E, Lo MA. Macrophage migration inhibitory factor gene influences the risk of developing tuberculosis in northwestern Colombian population. Tissue Antigens. 2007;70(1):28-33. https://doi.org/10.1111/j.1399-0039.2007.00843.x PMid:17559578 DOI: https://doi.org/10.1111/j.1399-0039.2007.00843.x
Li Y, Yuan T, Lu W, Chen M, Cheng X, Deng S. Association of tuberculosis and polymorphisms in the promoter region of macrophage migration inhibitory factor (MIF) in a Southwestern China Han population. Cytokine. 2012;60(1):64-7. https://doi.org/10.1016/j.cyto.2012.06.010 PMid:22742858 DOI: https://doi.org/10.1016/j.cyto.2012.06.010
Barcellini L, Borroni E, Brown J, Brunetti E, Campisi D, Castellotti PF, et al. First evaluation of QuantiFERON-TB gold plus performance in contact screening. Eur Respir J. 2016;48(5):1411-9. https://doi.org/10.1183/13993003.00510-2016 PMid:27390280 DOI: https://doi.org/10.1183/13993003.00510-2016
Qiagen. QuantiFERON ® TB Gold Plus (QFT ® -Plus) ELISA Package Insert 2; 2016. Available from: http://www.quantiferon.com/wp-content/uploads/2017/04/English_QFTPlus_ELISA_R04_022016.pdf [Last accessed on 2021 May 20].
Marozik P, Mosse I, Alekna V, Rudenko E, Tamulaitienė M, Ramanau H, et al. Association between polymorphisms of VDR, COL1A1, and LCT genes and bone mineral density in belarusian women with severe postmenopausal osteoporosis. Medicina (Kaunas, Lithuania). 2013;49(4):177-84. https://doi.org/10.3390/medicina49040028 PMid:23985982 DOI: https://doi.org/10.3390/medicina49040028
Wang J, Zhan X, Liu C, Zhang D, Meng L, Deng L. MIF, TGF-β1, IFN-γ _and NRAMP1 gene polymorphisms in relation to the clinicopathological profile of spinal tuberculosis in Chinese Han population. Int J Clin Exp Pathol. 2016;9(4):4438-47. http://www.ijcep.com/files/ijcep0021163.pdf
Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: A web tool for the analysis of association studies. Bioinformatics. 2006;22(15):1928-29. https://doi.org/10.1093/bioinformatics/btl268 PMid:16720584 DOI: https://doi.org/10.1093/bioinformatics/btl268
Salimi S, Farajian-masshadi F, Alavi-Naini R, Talebian G, Narooie- Nejad M. Association between Vitamin D receptor polymorphisms and haplotypes with pulmonary tuberculosis. Biomed Reports 2015;3(2):189-94. https://doi.org/10.3892/br.2014.402 PMid:26075071 DOI: https://doi.org/10.3892/br.2014.402
Panda S, Tiwari A, Luthra K, Sharma SK, Singh A. Association of Fok1 VDR polymorphism with Vitamin D and its associated molecules in pulmonary tuberculosis patients and their household contacts. Sci Rep. 2019;9(1):1-10. https://doi.org/10.1038/s41598-019-51803-8 PMid:31649297 DOI: https://doi.org/10.1038/s41598-019-51803-8
Singla N, Gupta D, Birbian N, Singh J. Association of VDR gene polymorphism and haplotype with tuberculosis susceptibility, treatment outcome, bacillary load and extrapulmonary site. J Mol Biol Tech. 2015;1(1):101.
Jurutka PW, Remus LS, Whitfield GK, Thompson PD, Hsieh JC, Zitzer H, et al. The polymorphic N terminus in human Vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol. 2000;14(3):401-20. https://doi.org/10.1210/mend.14.3.0435 PMid:10707958 DOI: https://doi.org/10.1210/mend.14.3.0435
Olesen R, Wejse C, Bisseye C, Sodemann M, Aaby P, Rabna P, et al. DC-SIGN (CD209), pentraxin 3 and Vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun. 2007;8(6):456-67. https://doi.org/10.1038/sj.gene.6364410 PMid:17611589 DOI: https://doi.org/10.1038/sj.gene.6364410
Alexandra SG, Georgiana DC, Nicoleta C, Daniela PM, Traian S, Veronica S. Apa I and taq I polymorphisms of CDR (Vitamin D receptor) gene in association with susceptibility to tuberculosis in the Romanian population. Rom Biotechnol Lett. 2013;18(1):7956-62.
Fernández-Mestre M, Villasmil Á, Takiff H, Alcalá ZF. NRAMP1 and VDR gene polymorphisms in susceptibility to tuberculosis in venezuelan population. Dis Markers 2015;2015:860628. https://doi.org/10.1155/2015/860628 PMid:26578819 DOI: https://doi.org/10.1155/2015/860628
Lee SW, Chuang TY, Huang HH, Liu CW, Kao YH, Wu LS. VDR and VDBP genes polymorphisms associated with susceptibility to tuberculosis in a Han Taiwanese population. J Microbiol Immunol Infect. 2016;49(5):783-7. https://doi.org/10.1016/j. jmii.2015.12.008 PMid:26869016 DOI: https://doi.org/10.1016/j.jmii.2015.12.008
Hussain T, Naushad SM, Ahmed A, Alamery S, Mohammed AA, Abdelkader MO, et al. Association of Vitamin D receptor TaqI and ApaI genetic polymorphisms with nephrolithiasis and end stage renal disease: A meta-analysis. BMC Med Genet. 2019;20(1):193. https://doi.org/10.1186/s12881-019-0932-6 PMid:31822280 DOI: https://doi.org/10.1186/s12881-019-0932-6
Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, et al. Prediction of bone density from Vitamin D receptor alleles. Nature. 1994;367(6460):284-7. https://doi.org/10.1038/367284a0 PMid:8161378 DOI: https://doi.org/10.1038/367284a0
Singh A, Gaughan JP, Kashyap VK. SLC11A1 and VDR gene variants and susceptibility to tuberculosis and disease progression in East India. Int J Tuberc Lung Dis. 2011;15(11):1468-75. https://doi.org/10.5588/ijtld.11.0089 PMid:22008758 DOI: https://doi.org/10.5588/ijtld.11.0089
Sinaga BY, Amin M, Siregar Y, Sarumpaet SM. Correlation between Vitamin D receptor gene FOKI and BSMI polymorphisms and the susceptibility to pulmonary tuberculosis in an Indonesian Batak-ethnic population. Acta Med Indones 2014;46(4):275-82. http://www.inaactamedica.org/archives/2014/25633543.pdf PMid:25633543
Areeshi MY, Mandal RK, Dar SA, Alshahrani AM, Ahmad A, Jawed A, et al. A reappraised meta-analysis of the genetic association between Vitamin D receptor Bsm I (rs1544410) polymorphism and pulmonary tuberculosis risk. Biosci Rep. 2017;37(3):BSR20170247. https://doi.org/10.1042/bsr20170247 PMid:28533426 DOI: https://doi.org/10.1042/BSR20170247
De Benedetti F, Meazza C, Vivarelli M, Rossi F, Pistorio A, Lamb R, et al. Functional and prognostic relevance of the -173 polymorphism of the macrophage migration inhibitory factor gene in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2003;48(5):1398-407. https://doi.org/10.1002/art.10882 PMid:12746913 DOI: https://doi.org/10.1002/art.10882
Fei B, Lv HX, Yang JM, Ye ZY. Association of MIF-173 gene polymorphism with inflammatory bowel disease in Chinese Han population. Cytokine. 2008;41(1):44-7. https://doi.org/10.1016/j.cyto.2007.10.010 PMid:18054247 DOI: https://doi.org/10.1016/j.cyto.2007.10.010
Reid D, Shenoi S, Singh R, Wang M, Patel V, et al. Low expression macrophage migration inhibitory factor (MIF) alleles and tuberculosis in HIV infected South Africans. Cytokine X. 2019;1(1):100004. https://doi.org/10.1016/j.cytox.2019.100004 PMid:33604547 DOI: https://doi.org/10.1016/j.cytox.2019.100004
Kuai SG, Ou QF, You DH, Shang ZB, Wang J, Liu J, et al. Functional polymorphisms in the gene encoding macrophage migration inhibitory factor (MIF) are associated with active pulmonary tuberculosis. Infect Dis (Auckl). 2016;48(3):222-8. https://doi.org/10.3109/23744235.2015.1107188 PMid 26542751 DOI: https://doi.org/10.3109/23744235.2015.1107188
Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: An update. Ann Intern Med. 2008;149(3):177-84. https://doi.org/10.7326/0003-4819-149-3-200808050-00241 PMid:18593687 DOI: https://doi.org/10.7326/0003-4819-149-3-200808050-00241
Trajman A, Steffen RE, Menzies D. Interferon-gamma release assays versus tuberculin skin testing for the diagnosis of latent tuberculosis infection: An overview of the evidence. Pulm Med. 2013;2013:601737. https://doi.org/10.1155/2013/601737 PMid:23476763 DOI: https://doi.org/10.1155/2013/601737
Sasmono RT, Massi MN, Setianingsih TY, Wahyuni S, Anita, Halik H, et al. Heterogeneity of Mycobacterium tuberculosis strains in Makassar, Indonesia. Int J Tuberc Lung Dis 2012;16(11):1441-8. https://doi.org/10.5588/ijtld.12.0055 PMid:23044445 DOI: https://doi.org/10.5588/ijtld.12.0055
Davis AH, Wang J, Tsang TC, Harris DT. Direct sequencing is more accurate and feasible in detecting single nucleotide polymorphisms than RFLP: Using human vascular endothelial growth factor gene as a model. Biol Res Nurs. 2007;9:170-8. https://doi.org/10.1177/1099800407308083 PMid:17909169 DOI: https://doi.org/10.1177/1099800407308083
Downloads
Published
How to Cite
License
Copyright (c) 2021 Najdah Hidayah, Irawaty Djaharuddin, Ahyar Ahmad, Rosdiana Natzir, Ilhamjaya Patellongi, Agussalim Bukhari, Irda Handayani, Andi Tenriola, Subair Subair, Handayani Halik, Muhammad Nasrum Massi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0