The Effect of Incorporating Different Concentrations of Octenidine Dihydrochloride on the Degree of Conversion of an Experimental Flowable Resin Composite

Authors

  • Mahitab Mansour Department of Dental Biomaterials Science, Faculty of Dentistry, October University for Modern Sciences and Arts, Cairo, Egypt https://orcid.org/0000-0003-1261-2795
  • Tarek Salah Hussein Department of Dental Biomaterials Science, Faculty of Dentistry, Ain-Shams University, Cairo, Egypt https://orcid.org/0000-0002-7703-567X
  • Haidy Salem Department of Restorative and Dental Materials, National Research Center, Cairo, Egypt https://orcid.org/0000-0002-0717-0489

DOI:

https://doi.org/10.3889/oamjms.2021.6885

Keywords:

Flowable composite, Degree of conversion, Octenidine dihydrochloride

Abstract

BACKGROUND: One of the important parameters in assessing the definitive physical, mechanical, and biological characteristics of resin composites is the degree of conversion (DC), as composite qualities have been proven to improve with increasing the DC after photo-polymerization. Besides, fracture or secondary caries are the most common causes of composite resin failure. Accordingly, this reflects the need of formulating dental restorative materials possessing antibacterial activity.

AIM: This study was designed to incorporate different concentrations of a new antibacterial agent (Octenidine dihydrochloride [OCT]) into an experimentally formulated flowable resin composite and evaluate its DC.

MATERIALS AND METHODS: Four groups were tested in this study; group I was used as the control group, it’s a commercially available flowable composite “Herculite Ultra Flowable”. Group II was an experimental flowable composite with no antibacterial agent. During the preparation of the experimental flowable resin composite material, OCT antibacterial agent was added to the filler in special dark containers at a concentration of 1% wt. and 1.5% wt. respectively, in groups III and IV. The DC was measured and compared to the commercially available resin composite using the Fourier Transform Infrared spectroscopy method.

RESULTS: Results of the current study showed that the mean values of DC ranged between (70.37 and 48.7), where Group1 showed the highest mean value, followed by Group 2 than Group 3, Group 4 specimens had the lowest mean value. The data showed that there is a statistically significant difference between all the tested groups. However, the DC was still within the accepted ranges for dental use.

CONCLUSION: Based on the results obtained within the experimental conditions of this study it may be stated that the inclusion of the antibacterial OCT 1% and 1.5% wt., into the flowable resin composite showed satisfactory results for the DC as it met the ADA requirements for clinical use.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

McDonald A. Albers tooth-colored restoratives: Principles and techniques. Oral Dis. 2004;10(1):61. https://doi.org/10.1046/j.1354-523x.2003.00976.x DOI: https://doi.org/10.1046/j.1354-523X.2003.00976.x

Mazer RB, Leinfelder KF. Evaluating a microfill posterior composite resin a five-year study. J Am Dent Assoc. 1992;123(4):32-8. https://doi.org/10.14219/jada.archive.1992.0111 DOI: https://doi.org/10.14219/jada.archive.1992.0111

Wendt SL Jr., Leinfelder KF. Clinical evaluation of clearfil photoposterior: 3-year results. Am J Dent. 1992;5(3):121-5. PMid:1388946

Galvão MR, Caldas SG, Bagnato VS, de Souza Rastelli AN, de Andrade MF. Evaluation of degree of conversion and hardness of dental composites photo-activated with different light guide tips. Eur J Dent. 2013;7(1):86-93. PMid:23407620

Imazato S, Chen JH, Ma S, Izutani N, Li F. Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Jpn Dent Sci Rev. 2012;48(2):115-25. https://doi.org/10.1016/j.jdsr.2012.02.003 DOI: https://doi.org/10.1016/j.jdsr.2012.02.003

Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater. 2006;22(7):647-52. https://doi.org/10.1016/j.dental.2005.08.003 PMid:16226806 DOI: https://doi.org/10.1016/j.dental.2005.08.003

Denis AB, Diagone CA, Plepis AM, Viana RB. Kinetic parameters during Bis-GMA and TEGDMA monomer polymerization by ATR-FTIR: The influence of photoinitiator and light curing source. J Spectrosc. 2016;2016:6524901. https://doi.org/10.1155/2016/6524901 DOI: https://doi.org/10.1155/2016/6524901

Conde MC, Zanchi CH, Rodrigues-Junior SA, Carreno NL, Ogliari FA, Piva E. Nanofiller loading level: Influence on selected properties of an adhesive resin. J Dent. 2009;37(5):331-5. https://doi.org/10.1016/j.jdent.2009.01.001 PMid:19203819 DOI: https://doi.org/10.1016/j.jdent.2009.01.001

Brochier Salon MC, Belgacem MN. Hydrolysis-condensation kinetics of different silane coupling agents. Phosphorus Sulfur Silicon. 2011;186(2):240-54. https://doi.org/10.1080/10426507.2010.494644 DOI: https://doi.org/10.1080/10426507.2010.494644

Atai M, Pahlavan A, Moin N. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Dent Mater. 2012;28(2):133-45. https://doi.org/10.1016/j.dental.2011.10.015 PMid:22137937 DOI: https://doi.org/10.1016/j.dental.2011.10.015

Du M, Zheng Y. Modification of silica nanoparticles and their application in UDMA dental polymeric composites. Polym Compos. 2007;28(2):198-207. https://doi.org/10.1002/pc.20377 DOI: https://doi.org/10.1002/pc.20377

American National Standards Institute. American National Standard/American Dental Association Specification No. 27 for Resin-Based Filling Materials. United States: American National Standards Institute; 1993. https://doi.org/10.14219/jada.archive.1982.0296 DOI: https://doi.org/10.14219/jada.archive.1982.0296

Abed YA, Sabry HA, Alrobeigy NA. Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dent J. 2015;12(2):71-80. https://doi.org/10.1016/j.tdj.2015.01.003 DOI: https://doi.org/10.1016/j.tdj.2015.01.003

Neves PB, Agnelli JA, Kurachi C, Souza CW. Addition of silver nanoparticles to composite resin: Effect on physical and bactericidal properties in vitro. Braz Dent J. 2014;25(2):141-5. https://doi.org/10.1590/0103-6440201302398 PMid:25140719 DOI: https://doi.org/10.1590/0103-6440201302398

Ashby MF. Materials Selection in Mechanical Design. Burlington, MA: Butterworth-Heinemann; 2011. p. 142-6. DOI: https://doi.org/10.1016/B978-1-85617-663-7.00005-9

Randolph LD, Palin WM, Bebelman S, Devaux J, Gallez B, Leloup G, et al. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent Mater. 2014;30(5):594-604. https://doi.org/10.1016/j.dental.2014.02.023 PMid:24679406 DOI: https://doi.org/10.1016/j.dental.2014.02.023

Borges AF, Chase MA, Guggiari AL, Gonzalez MJ, de Souza Ribeiro AR, Pascon FM, et al. A critical review on the conversion degree of resin monomers by direct analyses. Braz Dent Sci. 2013;16(1):18-26. https://doi.org/10.14295/bds.2013.v16i1.845 DOI: https://doi.org/10.14295/bds.2013.v16i1.845

Elhawary AA, Elkady AS, Kamar AA. Comparison of degree of conversion and microleakage in bulkfill flowable composite and conventional flowable composite (an in vitro study). Alex Dent J. 2016;41(3):336-43. https://doi.org/10.21608/adjalexu.2016.58049 DOI: https://doi.org/10.21608/adjalexu.2016.58049

Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med. 1995;6(4):302-18. PMid:8664421 DOI: https://doi.org/10.1177/10454411950060040301

Peutzfeldt A. Resin composites in dentistry: The monomer systems. Eur J Oral Sci. 1997;105(2):97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x PMid:9151062 DOI: https://doi.org/10.1111/j.1600-0722.1997.tb00188.x

Par M, Spanovic N, Tauböck TT, Attin T, Tarle Z. Degree of conversion of experimental resin composites containing bioactive glass 45S5: The effect of post-cure heating. Sci Rep. 2019;9(1):17245. https://doi.org/10.1038/s41598-019-54035-y PMid:31754180 DOI: https://doi.org/10.1038/s41598-019-54035-y

Chen MH. Update on dental nanocomposites. J Dent Res. 2010;89(6):549-60. PMid:20299523 DOI: https://doi.org/10.1177/0022034510363765

Antonucci JM, Dickens SH, Fowler BO, Xu HH, McDonough WG. Chemistry of silanes: Interfaces in dental polymers and composites. J Res Natl Inst Stand Technol. 2005;110(5):541-58. https://doi.org/10.6028/jres.110.081 PMid:27308178 DOI: https://doi.org/10.6028/jres.110.081

Shamszadeh S, Akhavan ZV, Mofidi M, Abdo TM, Yazadani S. Comparison of Flexural Strength of Several Composite Resins available in Iran; 2013. p. 97-103. Available from: sid.ir/en/journal/ViewPaper.aspx?id=502395.

Zorzin J, Maier E, Harre S, Fey T, Belli R, Lohbauer U, et al. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent Mater. 2015;31(3):293-301. https://doi.org/10.1016/j.dental.2014.12.010 PMid:25582061 DOI: https://doi.org/10.1016/j.dental.2014.12.010

Stencel R, Kasperski J, Pakieła W, Mertas A, Bobela E, Barszczewska-Rybarek I, et al. Properties of experimental dental composites containing antibacterial silver-releasing filler. Materials (Basel). 2018;11(6):1031. https://doi.org/10.3390/ma11112173 PMid:29912158 DOI: https://doi.org/10.3390/ma11061031

Halvorson RH, Erickson RL, Davidson CL. The effect of filler and silane content on conversion of resin-based composite. Dent Mater. 2003;19(4):327-33. https://doi.org/10.1016/s0109-5641(02)00062-3 PMid:12686298 DOI: https://doi.org/10.1016/S0109-5641(02)00062-3

Downloads

Published

2021-09-10

How to Cite

1.
Mansour M, Hussein TS, Salem H. The Effect of Incorporating Different Concentrations of Octenidine Dihydrochloride on the Degree of Conversion of an Experimental Flowable Resin Composite. Open Access Maced J Med Sci [Internet]. 2021 Sep. 10 [cited 2024 Nov. 23];9(D):196-201. Available from: https://oamjms.eu/index.php/mjms/article/view/6885

Issue

Section

Pedodontics and Preventive Dentistry

Categories