The Effect of Incorporating Different Concentrations of Octenidine Dihydrochloride on the Degree of Conversion of an Experimental Flowable Resin Composite


  • Mahitab Mansour Department of Dental Biomaterials Science, Faculty of Dentistry, October University for Modern Sciences and Arts, Cairo, Egypt
  • Tarek Salah Hussein Department of Dental Biomaterials Science, Faculty of Dentistry, Ain-Shams University, Cairo, Egypt
  • Haidy Salem Department of Restorative and Dental Materials, National Research Center, Cairo, Egypt



Flowable composite, Degree of conversion, Octenidine dihydrochloride


BACKGROUND: One of the important parameters in assessing the definitive physical, mechanical, and biological characteristics of resin composites is the degree of conversion (DC), as composite qualities have been proven to improve with increasing the DC after photo-polymerization. Besides, fracture or secondary caries are the most common causes of composite resin failure. Accordingly, this reflects the need of formulating dental restorative materials possessing antibacterial activity.

AIM: This study was designed to incorporate different concentrations of a new antibacterial agent (Octenidine dihydrochloride [OCT]) into an experimentally formulated flowable resin composite and evaluate its DC.

MATERIALS AND METHODS: Four groups were tested in this study; group I was used as the control group, it’s a commercially available flowable composite “Herculite Ultra Flowable”. Group II was an experimental flowable composite with no antibacterial agent. During the preparation of the experimental flowable resin composite material, OCT antibacterial agent was added to the filler in special dark containers at a concentration of 1% wt. and 1.5% wt. respectively, in groups III and IV. The DC was measured and compared to the commercially available resin composite using the Fourier Transform Infrared spectroscopy method.

RESULTS: Results of the current study showed that the mean values of DC ranged between (70.37 and 48.7), where Group1 showed the highest mean value, followed by Group 2 than Group 3, Group 4 specimens had the lowest mean value. The data showed that there is a statistically significant difference between all the tested groups. However, the DC was still within the accepted ranges for dental use.

CONCLUSION: Based on the results obtained within the experimental conditions of this study it may be stated that the inclusion of the antibacterial OCT 1% and 1.5% wt., into the flowable resin composite showed satisfactory results for the DC as it met the ADA requirements for clinical use.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


McDonald A. Albers tooth-colored restoratives: Principles and techniques. Oral Dis. 2004;10(1):61.

Mazer RB, Leinfelder KF. Evaluating a microfill posterior composite resin a five-year study. J Am Dent Assoc. 1992;123(4):32-8.

Wendt SL Jr., Leinfelder KF. Clinical evaluation of clearfil photoposterior: 3-year results. Am J Dent. 1992;5(3):121-5. PMid:1388946

Galvão MR, Caldas SG, Bagnato VS, de Souza Rastelli AN, de Andrade MF. Evaluation of degree of conversion and hardness of dental composites photo-activated with different light guide tips. Eur J Dent. 2013;7(1):86-93. PMid:23407620

Imazato S, Chen JH, Ma S, Izutani N, Li F. Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Jpn Dent Sci Rev. 2012;48(2):115-25.

Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater. 2006;22(7):647-52. PMid:16226806

Denis AB, Diagone CA, Plepis AM, Viana RB. Kinetic parameters during Bis-GMA and TEGDMA monomer polymerization by ATR-FTIR: The influence of photoinitiator and light curing source. J Spectrosc. 2016;2016:6524901.

Conde MC, Zanchi CH, Rodrigues-Junior SA, Carreno NL, Ogliari FA, Piva E. Nanofiller loading level: Influence on selected properties of an adhesive resin. J Dent. 2009;37(5):331-5. PMid:19203819

Brochier Salon MC, Belgacem MN. Hydrolysis-condensation kinetics of different silane coupling agents. Phosphorus Sulfur Silicon. 2011;186(2):240-54.

Atai M, Pahlavan A, Moin N. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Dent Mater. 2012;28(2):133-45. PMid:22137937

Du M, Zheng Y. Modification of silica nanoparticles and their application in UDMA dental polymeric composites. Polym Compos. 2007;28(2):198-207.

American National Standards Institute. American National Standard/American Dental Association Specification No. 27 for Resin-Based Filling Materials. United States: American National Standards Institute; 1993.

Abed YA, Sabry HA, Alrobeigy NA. Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dent J. 2015;12(2):71-80.

Neves PB, Agnelli JA, Kurachi C, Souza CW. Addition of silver nanoparticles to composite resin: Effect on physical and bactericidal properties in vitro. Braz Dent J. 2014;25(2):141-5. PMid:25140719

Ashby MF. Materials Selection in Mechanical Design. Burlington, MA: Butterworth-Heinemann; 2011. p. 142-6.

Randolph LD, Palin WM, Bebelman S, Devaux J, Gallez B, Leloup G, et al. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent Mater. 2014;30(5):594-604. PMid:24679406

Borges AF, Chase MA, Guggiari AL, Gonzalez MJ, de Souza Ribeiro AR, Pascon FM, et al. A critical review on the conversion degree of resin monomers by direct analyses. Braz Dent Sci. 2013;16(1):18-26.

Elhawary AA, Elkady AS, Kamar AA. Comparison of degree of conversion and microleakage in bulkfill flowable composite and conventional flowable composite (an in vitro study). Alex Dent J. 2016;41(3):336-43.

Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med. 1995;6(4):302-18. PMid:8664421

Peutzfeldt A. Resin composites in dentistry: The monomer systems. Eur J Oral Sci. 1997;105(2):97-116. PMid:9151062

Par M, Spanovic N, Tauböck TT, Attin T, Tarle Z. Degree of conversion of experimental resin composites containing bioactive glass 45S5: The effect of post-cure heating. Sci Rep. 2019;9(1):17245. PMid:31754180

Chen MH. Update on dental nanocomposites. J Dent Res. 2010;89(6):549-60. PMid:20299523

Antonucci JM, Dickens SH, Fowler BO, Xu HH, McDonough WG. Chemistry of silanes: Interfaces in dental polymers and composites. J Res Natl Inst Stand Technol. 2005;110(5):541-58. PMid:27308178

Shamszadeh S, Akhavan ZV, Mofidi M, Abdo TM, Yazadani S. Comparison of Flexural Strength of Several Composite Resins available in Iran; 2013. p. 97-103. Available from:

Zorzin J, Maier E, Harre S, Fey T, Belli R, Lohbauer U, et al. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent Mater. 2015;31(3):293-301. PMid:25582061

Stencel R, Kasperski J, Pakieła W, Mertas A, Bobela E, Barszczewska-Rybarek I, et al. Properties of experimental dental composites containing antibacterial silver-releasing filler. Materials (Basel). 2018;11(6):1031. PMid:29912158

Halvorson RH, Erickson RL, Davidson CL. The effect of filler and silane content on conversion of resin-based composite. Dent Mater. 2003;19(4):327-33. PMid:12686298




How to Cite

Mansour M, Hussein TS, Salem H. The Effect of Incorporating Different Concentrations of Octenidine Dihydrochloride on the Degree of Conversion of an Experimental Flowable Resin Composite. Open Access Maced J Med Sci [Internet]. 2021 Sep. 10 [cited 2021 Nov. 30];9(D):196-201. Available from:



Pedodontics and Preventive Dentistry