The Effect of Incorporating Different Concentrations of Octenidine Dihydrochloride on the Degree of Conversion of an Experimental Flowable Resin Composite
DOI:
https://doi.org/10.3889/oamjms.2021.6885Keywords:
Flowable composite, Degree of conversion, Octenidine dihydrochlorideAbstract
BACKGROUND: One of the important parameters in assessing the definitive physical, mechanical, and biological characteristics of resin composites is the degree of conversion (DC), as composite qualities have been proven to improve with increasing the DC after photo-polymerization. Besides, fracture or secondary caries are the most common causes of composite resin failure. Accordingly, this reflects the need of formulating dental restorative materials possessing antibacterial activity.
AIM: This study was designed to incorporate different concentrations of a new antibacterial agent (Octenidine dihydrochloride [OCT]) into an experimentally formulated flowable resin composite and evaluate its DC.
MATERIALS AND METHODS: Four groups were tested in this study; group I was used as the control group, it’s a commercially available flowable composite “Herculite Ultra Flowable”. Group II was an experimental flowable composite with no antibacterial agent. During the preparation of the experimental flowable resin composite material, OCT antibacterial agent was added to the filler in special dark containers at a concentration of 1% wt. and 1.5% wt. respectively, in groups III and IV. The DC was measured and compared to the commercially available resin composite using the Fourier Transform Infrared spectroscopy method.
RESULTS: Results of the current study showed that the mean values of DC ranged between (70.37 and 48.7), where Group1 showed the highest mean value, followed by Group 2 than Group 3, Group 4 specimens had the lowest mean value. The data showed that there is a statistically significant difference between all the tested groups. However, the DC was still within the accepted ranges for dental use.
CONCLUSION: Based on the results obtained within the experimental conditions of this study it may be stated that the inclusion of the antibacterial OCT 1% and 1.5% wt., into the flowable resin composite showed satisfactory results for the DC as it met the ADA requirements for clinical use.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
McDonald A. Albers tooth-colored restoratives: Principles and techniques. Oral Dis. 2004;10(1):61. https://doi.org/10.1046/j.1354-523x.2003.00976.x DOI: https://doi.org/10.1046/j.1354-523X.2003.00976.x
Mazer RB, Leinfelder KF. Evaluating a microfill posterior composite resin a five-year study. J Am Dent Assoc. 1992;123(4):32-8. https://doi.org/10.14219/jada.archive.1992.0111 DOI: https://doi.org/10.14219/jada.archive.1992.0111
Wendt SL Jr., Leinfelder KF. Clinical evaluation of clearfil photoposterior: 3-year results. Am J Dent. 1992;5(3):121-5. PMid:1388946
Galvão MR, Caldas SG, Bagnato VS, de Souza Rastelli AN, de Andrade MF. Evaluation of degree of conversion and hardness of dental composites photo-activated with different light guide tips. Eur J Dent. 2013;7(1):86-93. PMid:23407620
Imazato S, Chen JH, Ma S, Izutani N, Li F. Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Jpn Dent Sci Rev. 2012;48(2):115-25. https://doi.org/10.1016/j.jdsr.2012.02.003 DOI: https://doi.org/10.1016/j.jdsr.2012.02.003
Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater. 2006;22(7):647-52. https://doi.org/10.1016/j.dental.2005.08.003 PMid:16226806 DOI: https://doi.org/10.1016/j.dental.2005.08.003
Denis AB, Diagone CA, Plepis AM, Viana RB. Kinetic parameters during Bis-GMA and TEGDMA monomer polymerization by ATR-FTIR: The influence of photoinitiator and light curing source. J Spectrosc. 2016;2016:6524901. https://doi.org/10.1155/2016/6524901 DOI: https://doi.org/10.1155/2016/6524901
Conde MC, Zanchi CH, Rodrigues-Junior SA, Carreno NL, Ogliari FA, Piva E. Nanofiller loading level: Influence on selected properties of an adhesive resin. J Dent. 2009;37(5):331-5. https://doi.org/10.1016/j.jdent.2009.01.001 PMid:19203819 DOI: https://doi.org/10.1016/j.jdent.2009.01.001
Brochier Salon MC, Belgacem MN. Hydrolysis-condensation kinetics of different silane coupling agents. Phosphorus Sulfur Silicon. 2011;186(2):240-54. https://doi.org/10.1080/10426507.2010.494644 DOI: https://doi.org/10.1080/10426507.2010.494644
Atai M, Pahlavan A, Moin N. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Dent Mater. 2012;28(2):133-45. https://doi.org/10.1016/j.dental.2011.10.015 PMid:22137937 DOI: https://doi.org/10.1016/j.dental.2011.10.015
Du M, Zheng Y. Modification of silica nanoparticles and their application in UDMA dental polymeric composites. Polym Compos. 2007;28(2):198-207. https://doi.org/10.1002/pc.20377 DOI: https://doi.org/10.1002/pc.20377
American National Standards Institute. American National Standard/American Dental Association Specification No. 27 for Resin-Based Filling Materials. United States: American National Standards Institute; 1993. https://doi.org/10.14219/jada.archive.1982.0296 DOI: https://doi.org/10.14219/jada.archive.1982.0296
Abed YA, Sabry HA, Alrobeigy NA. Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dent J. 2015;12(2):71-80. https://doi.org/10.1016/j.tdj.2015.01.003 DOI: https://doi.org/10.1016/j.tdj.2015.01.003
Neves PB, Agnelli JA, Kurachi C, Souza CW. Addition of silver nanoparticles to composite resin: Effect on physical and bactericidal properties in vitro. Braz Dent J. 2014;25(2):141-5. https://doi.org/10.1590/0103-6440201302398 PMid:25140719 DOI: https://doi.org/10.1590/0103-6440201302398
Ashby MF. Materials Selection in Mechanical Design. Burlington, MA: Butterworth-Heinemann; 2011. p. 142-6. DOI: https://doi.org/10.1016/B978-1-85617-663-7.00005-9
Randolph LD, Palin WM, Bebelman S, Devaux J, Gallez B, Leloup G, et al. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent Mater. 2014;30(5):594-604. https://doi.org/10.1016/j.dental.2014.02.023 PMid:24679406 DOI: https://doi.org/10.1016/j.dental.2014.02.023
Borges AF, Chase MA, Guggiari AL, Gonzalez MJ, de Souza Ribeiro AR, Pascon FM, et al. A critical review on the conversion degree of resin monomers by direct analyses. Braz Dent Sci. 2013;16(1):18-26. https://doi.org/10.14295/bds.2013.v16i1.845 DOI: https://doi.org/10.14295/bds.2013.v16i1.845
Elhawary AA, Elkady AS, Kamar AA. Comparison of degree of conversion and microleakage in bulkfill flowable composite and conventional flowable composite (an in vitro study). Alex Dent J. 2016;41(3):336-43. https://doi.org/10.21608/adjalexu.2016.58049 DOI: https://doi.org/10.21608/adjalexu.2016.58049
Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med. 1995;6(4):302-18. PMid:8664421 DOI: https://doi.org/10.1177/10454411950060040301
Peutzfeldt A. Resin composites in dentistry: The monomer systems. Eur J Oral Sci. 1997;105(2):97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x PMid:9151062 DOI: https://doi.org/10.1111/j.1600-0722.1997.tb00188.x
Par M, Spanovic N, Tauböck TT, Attin T, Tarle Z. Degree of conversion of experimental resin composites containing bioactive glass 45S5: The effect of post-cure heating. Sci Rep. 2019;9(1):17245. https://doi.org/10.1038/s41598-019-54035-y PMid:31754180 DOI: https://doi.org/10.1038/s41598-019-54035-y
Chen MH. Update on dental nanocomposites. J Dent Res. 2010;89(6):549-60. PMid:20299523 DOI: https://doi.org/10.1177/0022034510363765
Antonucci JM, Dickens SH, Fowler BO, Xu HH, McDonough WG. Chemistry of silanes: Interfaces in dental polymers and composites. J Res Natl Inst Stand Technol. 2005;110(5):541-58. https://doi.org/10.6028/jres.110.081 PMid:27308178 DOI: https://doi.org/10.6028/jres.110.081
Shamszadeh S, Akhavan ZV, Mofidi M, Abdo TM, Yazadani S. Comparison of Flexural Strength of Several Composite Resins available in Iran; 2013. p. 97-103. Available from: sid.ir/en/journal/ViewPaper.aspx?id=502395.
Zorzin J, Maier E, Harre S, Fey T, Belli R, Lohbauer U, et al. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent Mater. 2015;31(3):293-301. https://doi.org/10.1016/j.dental.2014.12.010 PMid:25582061 DOI: https://doi.org/10.1016/j.dental.2014.12.010
Stencel R, Kasperski J, Pakieła W, Mertas A, Bobela E, Barszczewska-Rybarek I, et al. Properties of experimental dental composites containing antibacterial silver-releasing filler. Materials (Basel). 2018;11(6):1031. https://doi.org/10.3390/ma11112173 PMid:29912158 DOI: https://doi.org/10.3390/ma11061031
Halvorson RH, Erickson RL, Davidson CL. The effect of filler and silane content on conversion of resin-based composite. Dent Mater. 2003;19(4):327-33. https://doi.org/10.1016/s0109-5641(02)00062-3 PMid:12686298 DOI: https://doi.org/10.1016/S0109-5641(02)00062-3
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Mahitab Mansour, Tarek Salah Hussein, Haidy Salem (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0