The Effectiveness of Betle Leaf (Piper betle L.) Extract as a Bio-pesticide for Controlled of Houseflies (Musca domestica L.)
DOI:
https://doi.org/10.3889/oamjms.2021.6886Keywords:
Piper betle, Houseflies, Bio-pesticides, VectorAbstract
BACKGROUND: The housefly, Musca domestica L., spreads disease by contaminating food. However, chemical insecticides used to combat houseflies can pollute the environment and can harm non-target insects and humans; this demands safer alternatives and pest control options.
AIM: This study aims to evaluate the effectiveness of Piper betle L. leaf extract as a bio-pesticide against houseflies.
METHODS: This study using a factorial design with six variations in concentration (0%, 5%, 10%, 15%, 20%, and 25%), four variations in contact time (15, 30, 60, and 120 minutes), and 5-day-old M. domestica adults that were bred from residential areas.
RESULTS: The results show that mortality was affected by concentration (p-value < 0.000), contact time (p-value < 0.000), and the interaction between concentration and contact time (p-value = 0.0007). Of the three, concentration had the greatest effect.
CONCLUSION: As such, the use of Piper betle L. extract is a suitable, cheap, and environmentally safe method for controlling M. domestica.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
UNICEF. Diarrhoea. UNICEF; 2020. Available from: https://data.unicef.org/topic/child-health/diarrhoeal-disease. [Last accessed on 2021 Jan 26].
Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, et al. Global burden of childhood pneumonia and diarrhoea. Lancet. 2013;381(9875):1405-16. http://doi.org/10.1016/S0140-6736(13)60222-6 PMid:23582727 DOI: https://doi.org/10.1016/S0140-6736(13)60222-6
Das JK, Hadi YB, Salam RA, Hoda M, Lassi ZS, Bhutta ZA. Fly control to prevent diarrhoea in children. Cochrane Database Syst Rev. 2018;12(12):CD011654. http://doi.org/10.1002/14651858.CD011654.pub2 PMid:30556598 DOI: https://doi.org/10.1002/14651858.CD011654.pub2
Ministry of Health Indonesia. Indonesia Health Profile 2019. Vol. 53. Indonesia: Ministry of Health Indonesia; 2019. p. 1689-99.
Bhutta ZA, Das JK, Walker N, Rizvi A, Campbell H, Rudan I, et al. Interventions to address deaths from childhood pneumonia and diarrhoea equitably: What works and at what cost? Lancet. 381(9875):1417-29. http://doi.org/10.1016/S0140-6736(13)60648-0 PMid:23582723 DOI: https://doi.org/10.1016/S0140-6736(13)60648-0
Yushananta P, Usman S. The incidence of diarrhea in babies affected through the cleanliness of eating utensils and hands. J Med Sci Clin Res. 2018;6(9):137. https://dx.doi.org/10.18535/jmscr/v6i9.137 DOI: https://doi.org/10.18535/jmscr/v6i9.137
Yushananta P, Ahyanti M, Hasan A. Community based total sanitation in Muara Putih Village, Natar District, Pesawaran Regency. Sakai Sambayan. 2021;2(2):76. https://doi.org/10.20473/jkl.v13i2.2021.113-120 DOI: https://doi.org/10.23960/jss.v2i2.79
Emerson PM, Lindsay SW, Walraven GE, Faal H, Bøgh C, Lowe K, et al. Effect of fly control on trachoma and diar rhoea. Lancet. 1999;353(9162):1401-3. https://dx.doi.org/10.1016/S0140-6736(98)09158-2 PMid:10227221 DOI: https://doi.org/10.1016/S0140-6736(98)09158-2
Agtini MD. Diarrhea Morbidity and Mortality in Toddlers in Indonesia 2000-2007. Vol. 2. Ministry of Health; 2009. p. 26-32.
Chavasse DC, Blumenthal U, Kolsky P. Fly control in prevention of diarrhoeal disease. Lancet. 1994;344(8931):1231. https://doi.org/10.1016/s0140-6736(94)90547-9 PMid:7934565 DOI: https://doi.org/10.1016/S0140-6736(94)90547-9
Pickering AJ, Ercumen A, Arnold BF, Kwong LH, Parvez SM, Alam M, et al. Fecal indicator bacteria along multiple environmental transmission pathways (water, hands, food, soil, flies) and subsequent child diarrhea in Rural Bangladesh. Environ Sci Technol. 2018;52(14):7928-36. https://dx.doi.org/10.1021/acs.est.8b00928 PMid:29902374 DOI: https://doi.org/10.1021/acs.est.8b00928
Chavasse D, Shier R, Murphy O, Huttly S, Cousens S, Akhtar T. Impact of fly control on childhood diarrhoea in Pakistan: community-randomised trial. Lancet. 1999;353(9146):22-5. DOI: https://doi.org/10.1016/S0140-6736(98)03366-2
Muñoz DJ, Rodríguez R. Bacterial and parasite agents in adult housefly Musca domestica collected in el peñón, Sucre State, Venezuela. [Agentes bacterianos y parasitarios en adultos de la mosca común musca domestica recolectadas en el peñón, estado Sucre, Venezuela]. Rev Cient Facult Cienc Vet Univ Zulia. 2015;25(2):159-66.
Diclaro JW 2nd, Cohnstaedt LW, Pereira RM, Allan SA, Koehler PG. Behavioral and physiological response of musca domestica to colored visual targets. J Med Entomol. 2012;49(1):94-100. https://doi.org/10.1603/ME10257 DOI: https://doi.org/10.1603/ME10257
Chaiphongpachara T, Laojun S. Using the modern morphometric approach to determine sexual dimorphism of three medically important flies (Order: Diptera) in Thailand. Biodivers J Biol Divers. 2019;20(5):542. https://doi.org/10.13057/BIODIV/D200542 DOI: https://doi.org/10.13057/biodiv/d200542
Wang JN, Hou J, Wu YY, Guo S, Liu QM, Li TQ, et al. Resistance of house fly, Musca domestica L. (Diptera: Muscidae), to five insecticides in Zhejiang Province, China: The Situation in 2017. Can J Infect Dis Med Microbiol. 2019;2019:4851914. https://doi.org/10.1155/2019/4851914 DOI: https://doi.org/10.1155/2019/4851914
Pavela R. Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother Res. 2008;22(2):274-8. https://doi.org/10.1002/ptr.2300 DOI: https://doi.org/10.1002/ptr.2300
Pavela R, Maggi F, Petrelli R, Cappellacci L, Buccioni M, Palmieri A, et al. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem Toxicol. 2020;136:111037. https://doi.org/10.1016/j.fct.2019.111037 DOI: https://doi.org/10.1016/j.fct.2019.111037
Junqueira AC, Ratan A, Acerbi E, Drautz-Moses DI, Premkrishnan BN, Costea PI, et al. The microbiomes of blowflies and houseflies as bacterial transmission reservoirs. Sci Rep. 2017;7(1):16324. https://doi.org/10.1038/s41598-017-16353-x. DOI: https://doi.org/10.1038/s41598-017-16353-x
Tan SW, Yap KL, Lee HL. Mechanical transport of rotavirus by the legs and wings of Musca domestica (Diptera: Muscidae). J Med Entomol. 34(5):527-31. https://doi.org/10.1093/jmedent/34.5.527 PMid:9379457 DOI: https://doi.org/10.1093/jmedent/34.5.527
Onyenwe E, Okore OO, Ubiaru PC, Abel C. Housefly-borne helminth parasites of Mouau and its public health implication for the university community. Anim Res Int. 2016;13(1):2352-8.
Collinet-Adler S, Babji S, Francis M, Kattula D, Premkumar PS, Sarkar R, et al. Environmental factors associated with high fly densities and diarrhea in Vellore, India. Appl Environ Microbiol. 2015;81(17):6053-8. https://doi.org/10.1128/AEM.01236-15 PMid:26116684 DOI: https://doi.org/10.1128/AEM.01236-15
Geden CJ. Status of biopesticides for control of house flies. J Biopestic. 2012;5:1-11.
Klauck V, Pazinato R, Volpato A, da Silva dos Santos D, Santos RC, Baldissera MD, et al. Insecticidal effect of several essential oils against Musca domestica. Comp Clin Pathol. 2008;27(1):167-72. DOI: https://doi.org/10.1007/s00580-017-2572-6
Chaiphongpachara T, Laojun S, Jongvisuttisan N, Tubsamut P, Dasom A. A checklist of medically important flies (Order: Diptera) in the central region of Thailand. Biodivers J Biol Divers. 2018;19(6):2134-9. DOI: https://doi.org/10.13057/biodiv/d190620
Chaiphongpachara T, Tubsamut P. Geometric morphometry of pupae to identify four medically important flies (Order: Diptera) in Thailand. Biodivers J Biol Divers. 2019;20(6):200603. DOI: https://doi.org/10.13057/biodiv/d200603
Nielsen AA, Skovgård H, Stockmarr A, Handberg KJ, Jørgensen PH. Persistence of low-pathogenic avian influenza H5N7 and H7N1 subtypes in house flies (Diptera: Muscidae). J Med Entomol. 2011;48(3):608-14. https://doi.org/10.1603/me11017 PMid:21661322 DOI: https://doi.org/10.1603/ME11017
Farooq M, Freed S. Infectivity of housefly, Musca domestica (Diptera: Muscidae) to different entomopathogenic fungi. Braz J Microbiol. 2016;47(4):807-16. https://doi.org/10.1016/j.bjm.2016.06.002 PMid:27522925 DOI: https://doi.org/10.1016/j.bjm.2016.06.002
Anisah A, Sukesi TW. Effectiveness of sirih leaf extract (Piper betle L.) as a house fly larvae (Musca domestica) larvicidal. J Disease Vektor. 2018;12(1):39-46. https://doi.org/10.22435/vektorp.v12i1.283 DOI: https://doi.org/10.22435/vektorp.v12i1.283
Attaullah, Zahoor MK, Zahoor MA, Mubarik MS, Rizvi H, Majeed HN, et al. Insecticidal, biological and biochemical response of Musca domestica (Diptera: Muscidae) to some indigenous weed plant extracts. Saudi J Biol Sci. 2020;27(1):106-16. https://doi.org/10.1016/j.sjbs.2019.05.009 PMid:31889824 DOI: https://doi.org/10.1016/j.sjbs.2019.05.009
Adibah A, Dharmana E. Larvicidal effectiveness test of boiled betle leaf (Piper betle L.) against aedes aegypti larvae gainst aedes value of Lc50, Lt50, and the rate of larvae mortality. Diponegoro Med J. 2019;6(2):244-52.
Putu N, Kusuma R, Muderawan IW. Chemical Content Analysis of Green Betle Leave (Piper betle) Extract with GC-MS. In: MIPA National Seminar 2016, Ganesha Education University; 2016.
Prakash B, Shukla R, Singh P, Kumar A, Mishra PK, Dubey NK. Efficacy of chemically characterized Piper betle L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity. Int J Food Microbiol. 2010;142(1-2):114-9. https://doi.org/10.1016/j.ijfoodmicro.2010.06.011 PMid:20621374 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.06.011
Brogdon WG, Chan A. Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay. Centers for Disease Control and Prevention. Atlanta: Centers for Disease Control and Prevention; 2020. p. 1-28.
McAllister JC, Scott M. CONUS Manual for Evaluating Insecticide Resistance in Mosquitoes Using the CDC Bottle Bioassay Kit. Atlanta: Centers for Disease Control and Prevention; 2020. p. 1-19.
Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York: Lawrence Erlbaum Associates; 1988.
Armianty A, Mattulada IK. Antibacterial effectiveness of betel leaf extract (Piper betle Linn) to Enterococcus faecalis. J Dentomaxillofac Sci. 2014;13(1):17. DOI: https://doi.org/10.15562/jdmfs.v13i1.381
dos Santos Dias L, de Macoris ML, Andrighetti MT, Otrera VC, Dias AD, Bauzer LG, et al. Toxicity of spinosad to temephosresistant Aedes aegypti populations in Brazil. PLoS One. 2017;12(3):e0173689. https://doi.org/10.1371/journal.pone.0173689 PMid:28301568 DOI: https://doi.org/10.1371/journal.pone.0173689
Row LC, Ho JC. The antimicrobial activity, mosquito larvicidal activity, antioxidant property and tyrosinase inhibition of Piper betle. J Chin Chem Soc. 2009;56(3):653-8. DOI: https://doi.org/10.1002/jccs.200900097
Mansbridge J. Skin substitutes to enhance wound healing. Expert Opin Investig Drugs. 1998;7(5):803-9. https://doi.org/10.1517/13543784.7.5.803 PMid:15991970 DOI: https://doi.org/10.1517/13543784.7.5.803
Dwipayana M, Wijaya I, Sritamin M. The effectiveness test of extracts of betel leaf (Piper betle L.), Kirinyuh (Chromoloena odorata) and Tembelekan (Lantana camara L.) against the population of root knot nematodes (Meloidogyne Spp.) and plant growth of chili (Capsicum annuum L.). E-J Agro Trop. 1985;6(1):62-71.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Prayudhy Yushananta, Mei Ahyanti (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0