Molecular Docking Approach of Natural Compound from Herbal Medicine in Java against Severe Acute Respiratory Syndrome Coronavirus-2 Receptor
DOI:
https://doi.org/10.3889/oamjms.2021.6963Keywords:
Natural compound, Herbal medicine, Angiotensin-converting enzyme-2 receptor, Severe acute respiratory syndrome coronavirus-2, Molecular dockingAbstract
Indonesia's diversity of natural resources presents an intriguing opportunity for the exploration of potential herbal medicines. Numerous compounds, both purified and crude, have been reported to exhibit antiviral activity. The ACE-2 receptor may be a therapeutic target for SARS-CoV-2 infection. We used a search engine to search for herbal medicines with ACE-2 inhibitory activity to predict the potential inhibition of natural compounds (i.e., theaflavin, deoxypodophyllotoxin, gallocatechin, allicin, quercetin, annonamine, Curcumin, 6-gingerol, and cucurbitacin B) to SARS-CoV2 – ACE-2 complex. We performed molecular docking analysis using the ACE-2 protein target from Protein Data Bank. Protein stabilization was carried out to adjust to the body's physiology, carried out using Pymol by removing water atoms and adding hydrogen atoms. Ligands of active compounds from natural resources were selected and downloaded from the PubChem database, then optimized by Pymol software. The complexes of the tested ligand compounds and ACE-2 receptors, which have a bond strength smaller than the control were selected for analysis. Theaflavin, Deoxypodophyllotoxin, Gallocatechin, Curcumin, and Cucurbitacin B had a strong bond affinity than the control ligands. Based on our data, deoxypodophylotoxin and Curcumin had the same interaction amino acid residus compare to the control ligand. This study concludes that deoxypodophyllotoxin and Curcumin have the greatest potential to inhibit the formation of the SARS-Cov2-ACE-2 complex; additionally, these compounds exhibit favorable pharmacological and pharmacodynamic properties. It is suggested that additional research be conducted to determine the biological effects of deoxypodopyllotoxin and Curcumin on ACE-2 receptors.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238-43. http://doi.org/10.1074/jbc.M002615200 PMid:10924499 DOI: https://doi.org/10.1074/jbc.M002615200
Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: Genomics and pharmacology. Trends Pharmacol Sci. 2002;23(4):177-83. http://doi.org/10.1016/s0165-6147(00)01994-5 PMid:11931993 DOI: https://doi.org/10.1016/S0165-6147(00)01994-5
Camargo SM, Singer D, Makrides V, Huggel K, Pos KM, Wagner CA, et al. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology. 2009;136(3):872-82. http://doi.org/10.1053/j.gastro.2008.10.055 PMid:19185582 DOI: https://doi.org/10.1053/j.gastro.2008.10.055
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395(10229):1054-62. http://doi.org/10.1016/S0140-6736(20)30566-3 PMid:32171076 DOI: https://doi.org/10.1016/S0140-6736(20)30566-3
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. http://doi.org/10.1126/science.abb2507 PMid:32075877 DOI: https://doi.org/10.1126/science.abb2507
Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020;24(1):422. http://doi.org/10.1186/s13054-020-03120-0 PMid:32660650 DOI: https://doi.org/10.1186/s13054-020-03120-0
Poduri R, Joshi G, Jagadeesh G. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cell Signal. 2020;74:109721. http://doi.org/10.1016/j.cellsig.2020.109721 PMid:32711111 DOI: https://doi.org/10.1016/j.cellsig.2020.109721
Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905-13.e7. http://doi.org/10.1016/j.cell.2020.04.004 PMid:32333836 DOI: https://doi.org/10.1016/j.cell.2020.04.004
APN01 Our Work on a Potential Drug Candidate for COVID- 19 Treatment APEIRON Biologics. Available from: https://www.apeiron-biologics.com/our-work-on-a-potential-drug-candidate-for-covid-19. [Last accessed on 2021 Aug 19].
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int J Antimicrob Agents 2020;55(5):105938. http://doi.org/10.1016/j.ijantimicag.2020.105938 PMid:32171740 DOI: https://doi.org/10.1016/j.ijantimicag.2020.105938
Chen L, Chen H, Dong S, Huang W, Chen L, Wei Y, et al. The effects of chloroquine and hydroxychloroquine on ACE2-related coronavirus pathology and the cardiovascular system: An evidence-based review. Function. 2020;1:zqaa012. DOI: https://doi.org/10.1093/function/zqaa012
Rebeaud ME, Zores F. SARS-CoV-2 and the use of chloroquine as an antiviral treatment. Front Med. 2020;7:184. http://doi.org/10.3389/fmed.2020.00184 PMid:32391371 DOI: https://doi.org/10.3389/fmed.2020.00184
Gbenou JD, Ahounou JF, Akakpo HB, Laleye A, Yayi E, Gbaguidi F, et al. Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora essential oils and their anti-inflammatory and analgesic properties on Wistar rats. Mol Biol Rep. 2013;40(2):1127- 34. http://doi.org/10.1007/s11033-012-2155-1 PMid:23065287 DOI: https://doi.org/10.1007/s11033-012-2155-1
Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14(2):111-29. http://doi.org/10.1038/nrd4510 PMid:25614221 DOI: https://doi.org/10.1038/nrd4510
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75(3):311-35. http://doi.org/10.1021/np200906s PMid:22316239 DOI: https://doi.org/10.1021/np200906s
Elfahmi, Woerdenbag HJ, Kayser O. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. J Herb Med. 2014;4:51-73. DOI: https://doi.org/10.1016/j.hermed.2014.01.002
Henuk YL. Medicinal plants used in traditional medicine and their roles in Indonesia. J Plant Pathol Microbiol. 2017;8:5.
Purwanti E, Mahmudati N, Faradila SF, Fauzi A. Utilization of plants as traditional medicine for various diseases: Ethnobotany study in Sumenep, Indonesia. AIP Conf Proc 2020;2231:040024. https://doi.org/10.1063/5.0002430 DOI: https://doi.org/10.1063/5.0002430
Xian Y, Zhang J, Bian Z, Zhou H, Zhang Z, Lin Z, et al. Bioactive natural compounds against human coronaviruses: A review and perspective. Acta Pharm Sin B. 2020;10(7):1163-74. http://doi.org/10.1016/j.apsb.2020.06.002 PMid:32834947 DOI: https://doi.org/10.1016/j.apsb.2020.06.002
Kharisma V, Nugraha A. Computational study of ginger (Zingiber officinale) as E6 inhibitor in human papillomavirus Type 16 (HPV-16) infection. Biochem Cell Arch. 2020;20:3155-9.
Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: A review. Biophys Rev. 2017;9(2):91-102. http://doi.org/10.1007/s12551-016-0247-1 PMid:28510083 DOI: https://doi.org/10.1007/s12551-016-0247-1
Jing Z, Feng H. Studies on the molecular docking and amino acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis. Protein J. 2015;34(3):173-80. http://doi.org/10.1007/s10930-015-9611-4 PMid:25957260 DOI: https://doi.org/10.1007/s10930-015-9611-4
Syaban MF, Rachman HA, Arrahman AD, Hudayana N, Purna J, Pratama FA. Allium sativum as antimalaria agent via falciapin protease-2 inhibitor mechanism: Molecular docking perspective. Clin Res J Intern Med 2021;2:6. DOI: https://doi.org/10.21776/ub.crjim.2021.002.01.4
Sumarni W, Sudarmin S, Sumarti SS. The scientification of jamu: A study of Indonesian’s traditional medicine. J Phys Conf Ser. 2019;1321:032057. DOI: https://doi.org/10.1088/1742-6596/1321/3/032057
Eff AR, Rahayu ST, Mahayasih PG. Standardization of indonesian traditional antihypertensive medicines (Jamu) through the ace inhibitor mechanism. Pharmacogn J 2020;12:422-9. http://doi.org/10.5530/pj.2020.12.65 DOI: https://doi.org/10.5530/pj.2020.12.65
Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human MicroRNA modulation. Molecules. 2019;25(1):63. http://doi.org/10.3390/molecules25010063 PMid:31878082 DOI: https://doi.org/10.3390/molecules25010063
Jang M, Park YI, Cha YE, Park R, Namkoong S, Lee JI, et al. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid Based Complement Alternat Med. 2020;2020:5630838. DOI: https://doi.org/10.1155/2020/5630838
Kapoor N, Ghorai SM, Kushwaha PK, Shukla R, Aggarwal C, Bandichhor R. Plausible mechanisms explaining the role of cucurbitacins as potential therapeutic drugs against coronavirus 2019. Inform Med Unlocked. 2020;21:100484. PMid:33251326 DOI: https://doi.org/10.1016/j.imu.2020.100484
Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, et al. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol. 2020;104:219-34. http://doi.org/10.1016/j.tifs.2020.08.006 PMid:32836826 DOI: https://doi.org/10.1016/j.tifs.2020.08.006
Borlinghaus J, Albrecht F, Gruhlke M, Nwachukwu I, Slusarenko A. Allicin: Chemistry and biological properties. Molecules. 2014;19:12591-618. DOI: https://doi.org/10.3390/molecules190812591
Joshi T, Joshi T, Sharma P, Mathpal S, Pundir H, Bhatt V, et al. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur Rev Med Pharmacol Sci. 2020;24(8):4529-36. http://doi.org/10.26355/eurrev_202004_21036 PMid:32373991
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. http://doi.org/10.1038/srep42717 PMid:28256516 DOI: https://doi.org/10.1038/srep42717
Lam WW, Siu SW. PyMOL mControl: Manipulating molecular visualization with mobile devices. Biochem Mol Biol Educ. 2017;45(1):76-83. http://doi.org/10.1002/bmb.20987 PMid:27292587 DOI: https://doi.org/10.1002/bmb.20987
Takemoto M, Takemoto H. Synthesis of theaflavins and their functions. Molecules. 2018;23(4):918. http://doi.org/10.3390/molecules23040918 PMid:29659496 DOI: https://doi.org/10.3390/molecules23040918
Guerram M, Jiang ZZ, Sun L, Zhu X, Zhang LY. Antineoplastic effects of deoxypodophyllotoxin, a potent cytotoxic agent of plant origin, on glioblastoma U-87 MG and SF126 cells. Pharmacol Rep. 2015;67(2):245-52. http://doi.org/10.1016/j.pharep.2014.10.003 PMid:25712646 DOI: https://doi.org/10.1016/j.pharep.2014.10.003
Khaled M, Jiang ZZ, Zhang LY. Deoxypodophyllotoxin: A promising therapeutic agent from herbal medicine. J Ethnopharmacol. 2013;149(1):24-34. http://doi.org/10.1016/j.jep.2013.06.021 Mid:23792585 DOI: https://doi.org/10.1016/j.jep.2013.06.021
Gamboa-Gómez CI, González-Laredo RF, Gallegos-Infante JA, Mar Larrosa Pérez MD, Moreno-Jiménez MR, Flores-Rueda AG. Antioxidant and angiotensin-converting enzyme inhibitory activity of eucalyptus camaldulensis and litsea glaucescens infusions fermented with kombucha consortium. Food Technol Biotechnol. 2016;54(3):367-74. http://doi.org/10.17113/ftb.54.03.16.4622 PMid:27956869 DOI: https://doi.org/10.17113/ftb.54.03.16.4622
Ko CH, Lau KM, Choy WY, Leung PC. Effects of tea catechins, epigallocatechin, gallocatechin, and gallocatechin gallate, on bone metabolism. J Agric Food Chem. 2009;57(16):7293-7. http://doi.org/10.1021/jf901545u PMid:19653629 DOI: https://doi.org/10.1021/jf901545u
Agrawal PK, Agrawal C, Blunden G. Quercetin: Antiviral significance and possible COVID-19 integrative considerations. Nat Prod Commun. 2020;15:1-10. DOI: https://doi.org/10.1177/1934578X20976293
Wang S, Zhang C, Yang G, Yang Y. Biological properties of 6-gingerol: A brief review. Nat Prod Commun. 2014;9:1027-30. PMid:25230520 DOI: https://doi.org/10.1177/1934578X1400900736
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4-17. DOI: https://doi.org/10.1016/j.addr.2012.09.019
Syaban MF, Erwan NE, Syamsuddin MR, Az Zahra F, Sabila FL. Molecular docking approach of viscosin as antibacterial for methicillin-resistant Staphylococcus aureus Via β-lactamase Inhibitor mechanism. Clin Res J Intern Med. 2021;2(2):187-92. DOI: https://doi.org/10.21776/ub.crjim.2021.002.02.4
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. In: Hempel JE, Williams CH, Hong CC, editors. Chemical Biology. New York: Springer; 2015. p. 243-50. DOI: https://doi.org/10.1007/978-1-4939-2269-7_19
Ferreira L, dos Santos R, Oliva G, Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384-421. https://doi.org/10.3390/molecules200713384 PMid:26205061 DOI: https://doi.org/10.3390/molecules200713384
Fu Y, Zhao J, Chen Z. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Comput Math Methods Med 2018;2018:3502514. https://doi.org/10.1155/2018/3502514 DOI: https://doi.org/10.1155/2018/3502514
Downloads
Published
How to Cite
License
Copyright (c) 2021 Yuyun Yueniwati, Mokhamad Fahmi Rizki Syaban, Icha Farihah Deniyati Faratisha, Khadijah Cahya Yunita, Dedy Budi Kurniawan, Gumilar Fardhani Ami Putra, Nabila Erina Erwan (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0