Impact of Obesity on Physical Activity
DOI:
https://doi.org/10.3889/oamjms.2021.6965Keywords:
Obesity, Dopamine, Exercise, Physical activity, MotivationAbstract
BACKGROUND: Obesity occurs due to an imbalance between the calories and the energy released. On the animal model, obesity is considered as the ground for low physical activity. This is caused by low dopamine D2 receptor in the striatum. However, this suggestion is still unproven in the human condition.
AIM: The aim of this study was to find out difference in dopamine expression in obese subjects compared to non-obese subjects when triggered by the stimuli of physical activity.
METHODS: This is a quasi-experimental study. The sample was obese and non-obese (control) female who met inclusion and exclusion criteria. Before treatment was given, subjects were asked to fill out a depression, anxiety, and exercise motivation questionnaire. All subjects were tested for vital signs, anthropometrics, and neurological examinations to determine the initial condition. Then, the subjects saw video about physical activity and were taken for blood to measure blood dopamine levels using enzyme-linked immunosorbent assay. Differences in dopamine levels between the obese and control groups were analyzed using independent t-test. The relationship between dopamine levels and exercise motivation was analyzed using Pearson.
RESULTS: The obese group’s dopamine level was 71.19 ±3.02ng/ml and the control group was 81.15 ± 3.17ng/ml (independent t-test, p = 0.032). The obese group’s motivation score was 58.46 ± 1.59 and the control group score was 62.38 ± 1.54 (independent t-test, p = 0.09). Furthermore, there was no correlation between dopamine levels and motivation scores (Pearson test, p = 0.09).
CONCLUSION: There are significant differences in dopamine levels between the obese group and the control group but no correlation between dopamine levels and exercise motivation scores.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Friend DM, Devarakonda K, O’Neal TJ, Skirzewski M, Papazoglou I, Kaplan AR, et al. Basal ganglia dysfunction contributes to physical inactivity in obesity. Cell Metab. 2017;25(2):312-21. http://doi.org/10.1016/j.cmet.2016.12.001 PMid:28041956 DOI: https://doi.org/10.1016/j.cmet.2016.12.001
Nikolaus S, Beu M, de Souza SMA, Huston JP, Antke C, Muller HW, et al. GABAergic control of neostriatal dopamine D2 receptor binding and behaviors in the rat. Pharmacol Biochem Behav. 2017;153:76-87. http://doi.org/10.1016/j.pbb.2016.12.012 PMid:28012732 DOI: https://doi.org/10.1016/j.pbb.2016.12.012
Dahlan MS. Besar Sampel dan Cara Pengambilan Sampel Dalam Penelitian Kedokteran dan Kesehatan. 3rd ed. Jakarta: Salemba Medika; 2009.
Baumeister H, Härter M. An inventory for measuring clinical anxiety. Int J Obes. 2007;31:1155-64. DOI: https://doi.org/10.1038/sj.ijo.0803556
Beck A, Steer RA. The Beck Depression Inventory (Manual). San Antonio: The Psyichological Corporation; 1991.
Susilowati L. Pelatihan Berpikir Positif Untuk Mengelola Depresi Pada Penyandang Cacat Tubuh. Indonesia: Universitas Gadjah Mada; 2008.
Barba C, Cavalli-Sforza T, Cutter J, Darnton-Hill I, Deurenberg P, Deurenberg-Yap M, et al. Appropriate body-mass index for Asian population and its implication for policy and intervention strategies. Lancet. 2004;363(9403):157-63. http://doi.org/10.1016/S0140-6736(03)15268-3 PMid:14726171 DOI: https://doi.org/10.1016/S0140-6736(03)15268-3
De Pereira PA, Alvim-Soares AM, Sandrim VC, Lanna CM, Souza-Costa DC, de Belo VA, et al. Lack of association between genetic polymorphism of FTO, AKT1, and AKTIP in childhood overweight and obesity. J Pediat-Brazil. 2016;92(5):521-7. http://doi.org/10.1016/j.jped.2015.12.007 PMid:27342216 DOI: https://doi.org/10.1016/j.jped.2015.12.007
Williams LM, Campbell FM, Drew JE, Koch C, Hoggard N, Rees WD, et al. The development of diet-induced obesity and glucose intolerance in C57Bl/6 mice on a high-fat diet consists of distinct phases. PLoS One. 2014;9(8):e106159. http://doi.org/10.1371/journal.pone.0106159 PMid:25170916 DOI: https://doi.org/10.1371/journal.pone.0106159
Li S, Zhang HY, Hu CC, Lawrence F, Gallagher KE, Surapaneni A, et al. Assesment of diet-induced obese rats as an obesity model by comparative functional genomics. Obesity. 2008;16(4):811-8. http://doi.org/10.1038/oby.2007.116 PMid:18239588 DOI: https://doi.org/10.1038/oby.2007.116
Telford RD. Low physical activity and obesity: Cause of chronoc disease or simply predictors? Med Sci Sport Exerc. 2007;39(8):1233-40. http://doi.org/10.1249/mss.0b013e31806215b7 PMid:17762355 DOI: https://doi.org/10.1249/mss.0b013e31806215b7
Wanner M, Martin BW, Autenrieth CS, Schaffner E, Meier F, Brombach C, et al. Association between domains of physical activity, sitting time, and different measures of overweight and obesity. Prev Med Rep. 2016;3:177-84. http://doi.org/10.1016/j.pmedr.2016.01.007 PMid:27419012 DOI: https://doi.org/10.1016/j.pmedr.2016.01.007
Wiklund P. The role of physical activity and exercise in obesity and weight management: Time for critical appraisal. J Sport Heal Sci. 2016;5(2):151-4. http://doi.org/10.1016/j.jshs.2016.04.001 PMid:30356545 DOI: https://doi.org/10.1016/j.jshs.2016.04.001
Moretto TL, Benfato ID, de Carvalho FP, Barthichoto M, Le Sueur-Maluf L, de Oliveira CA. The effects of calorie-matched high-fat diet consumption on spontaneous physical activity and development of obesity. Life Sci. 2017;179:30-6. http://doi.org/10.1016/j.lfs.2017.04.017 PMid:28449870 DOI: https://doi.org/10.1016/j.lfs.2017.04.017
Berthoud HR, Munzberg H, Morrison CD. Blaming the brain for obesity: Integratin of hedonic and homeostatic mechanisms. Gastroenterology. 2017;152(7):1728-38. http://doi.org/10.1053/j.gastro.2016.12.050 PMid:28192106 DOI: https://doi.org/10.1053/j.gastro.2016.12.050
Garcia-Hermoso A, Martinez-Vizcaino V, Recio-Rodriguez JI, Diez-Fernandez A, Gomez-Marcos MA, Garcia-Ortiz L, et al. Abdominal obesity as a mediator of the influence of physical activity on insulin resistance in Spanish adults. Prev Med. 2016;82:59-64. http://doi.org/10.1016/j.ypmed.2015.11.012 PMid:26601643 DOI: https://doi.org/10.1016/j.ypmed.2015.11.012
Phillips C, Fahimi A. Immune and neuroprotective effects of physical activity on the brain in depression. Front Neurosci. 2018;12(1):498. http://doi.org/10.3389/fnins.2018.00498 PMid:30093853 DOI: https://doi.org/10.3389/fnins.2018.00498
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182-217. http://doi.org/10.1124/pr.110.002642 PMid:21303898 DOI: https://doi.org/10.1124/pr.110.002642
Sezer S, Kurt S, Ates O. Analysis of dopamine beta hydroxylase gene polymorphisms in migraine. Clin Neurol Neurosurg. 2016;145:96-100. http://doi.org/10.1016/j.clineuro.2016.02.002 PMid:26868704 DOI: https://doi.org/10.1016/j.clineuro.2016.02.002
Munoz I, Hernandez MS, Pedraza MI, Dominguez E, Ruiz M, Isidro G, et al. Impulsivity among migraine patients: study in a series of 155 cases. Neurologia. 2014;31(9):599-605. https://doi.org/10.1016/j.nrleng.2014.10.013 DOI: https://doi.org/10.1016/j.nrleng.2014.10.013
Gardner DG, Shoback D. Greenspan’s Basic and Clinical Endocrinology. 9th ed. New York: McGraw-Hill Medical; 2011.
Lenders JW, Eisenhofer G, Armando I, Keiser HR, Goldstein DS, Kopin IJ. Determination of metanephrins in plasma by liquid chromatography with electrochemical detection. Clin Chem. 1993;39(1):93-103. PMid:8419068 DOI: https://doi.org/10.1093/clinchem/39.1.97
Downloads
Published
How to Cite
License
Copyright (c) 2021 Titis Nurmasitoh, Umatul Khoiriyah, Ika Fidianingsih, Adika Zhulhi Arjana, Ninda Devita (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0