The Molecular Mechanisms of Hypoglycemic Properties and Safety Profiles of Swietenia Macrophylla Seeds Extract: A Review

Authors

  • Ratih Dewi Yudhani Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia; Doctoral Programs in Health and Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia https://orcid.org/0000-0001-6781-8251
  • Dwi Aris Agung Nugrahaningsih Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia https://orcid.org/0000-0002-1616-3053
  • Eti Nurwening Sholikhah Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Mustofa Mustofa Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.6972

Keywords:

Insulin resistance, Swietenia macrophylla, Seeds, Hypoglycemic, Molecular mechanism, Toxicity

Abstract

BACKGROUND: Insulin resistance (IR) is known as the root cause of type 2 diabetes; hence, it is a substantial therapeutic target. Nowadays, studies have shifted the focus to natural ingredients that have been utilized as a traditional diabetes treatment, including Swietenia macrophylla. Accumulating evidence supports the hypoglycemic activities of S. macrophylla seeds extract, although its molecular mechanisms have yet to be well-established.

AIM: This review focuses on the hypoglycemic molecular mechanisms of S. macrophylla seeds extract and its safety profiles.

METHODS: An extensive search of the latest literature was conducted from four main databases (PubMed, Scopus, Science Direct, and Google Scholar) using several keywords: “swietenia macrophylla, seeds, and diabetes;” “swietenia macrophylla, seeds, and oxidative stress;” “swietenia macrophylla, seeds, and inflammation;” “swietenia macrophylla, seeds, and GLUT4;” and “swietenia macrophylla, seeds, and toxicities.”

RESULTS: The hypoglycemic activities occur through modulating several pathways associated with IR and T2D pathogenesis. The seeds extract of S. macrophylla modulates oxidative stress by decreasing malondialdehyde (MDA), oxidized low-density lipoprotein, and thiobarbituric acid-reactive substances while increasing antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Another propose mechanism is the modulating of the inflammatory pathway by attenuating nuclear factor kappa β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2. Some studies have shown that the extract can also control phosphatidylinositol-3-kinase/ Akt (PI3K/Akt) pathway by inducing glucose transporter 4, while suppressing phosphoenolpyruvate carboxykinase. Moreover, in vitro cytotoxicity and in vivo toxicity studies supported the safety profile of S. macrophylla seeds extract with the LD50 higher than 2000 mg/kg.

CONCLUSION: The potential of S. macrophylla seeds as antidiabetic candidate is supported by many studies that have documented their non-toxic and hypoglycemic effects, which involve several molecular pathways.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. https://doi.org/10.1016/j.diabres.2018.02.023 PMid:29496507 DOI: https://doi.org/10.1016/j.diabres.2018.02.023

International Diabetes Federation. IDF Diabetes Atlas. 8th ed. Brussels, Belgium: International Diabetes Federation; 2017. p. 1-150. https://doi.org/10.1016/j.diabres.2015.05.037 DOI: https://doi.org/10.1016/j.diabres.2015.05.037

Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to Type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185-200. https://doi.org/10.7150/ijms.10001 PMid:25249787 DOI: https://doi.org/10.7150/ijms.10001

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of Type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. https://doi.org/10.1038/nrendo.2017.151 PMid:29219149 DOI: https://doi.org/10.1038/nrendo.2017.151

Ashcroft FM, Rorsman P. Diabetes mellitus and the β cell: The last ten years. Cell. 2012;148(6):1160-71. https://doi.org/10.1016/j.cell.2012.02.010 PMid:22424227 DOI: https://doi.org/10.1016/j.cell.2012.02.010

Ozougwu J, Obimba K, Belonwu C, Unakalamba C. The pathogenesis and pathophysiology of Type 1 and Type 2 diabetes mellitus. J Physiol Pathophysiol. 2013;4(4):46-57. https://doi.org/10.5897/jpap2013.0001 DOI: https://doi.org/10.5897/JPAP2013.0001

Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta. 2014;1842(3):446-62. https://doi.org/10.1016/j.bbadis.2013.05.017 PMid:23707515 DOI: https://doi.org/10.1016/j.bbadis.2013.05.017

Rodelo CG, Guiberna AR, Reyes JA. Cellular mechanisms of insulin action. Gac Med Mex. 2017;153:197-209.

Alsadat S, Khorami H. PI3K/AKT pathway in modulating glucose homeostasis and its alteration in diabetes. Ann Med Biomed Sci. 2015;1(2):46-55.

Samuel VT, Shulman GI. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12-22. https://doi.org/10.1172/jci77812 PMid:26727229 DOI: https://doi.org/10.1172/JCI77812

Tahrani AA. Novel therapies in Type 2 diabetes: Insulin resistance. Pract Diabetes. 2017;34(5):161-6a. https://doi.org/10.1002/pdi.2109 DOI: https://doi.org/10.1002/pdi.2109

Nolan CJ, Prentki M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and Type 2 diabetes: Time for a conceptual framework shift. Diabetes Vasc Dis Res. 2019;16(2):118-27. https://doi.org/10.1177/1479164119827611 PMid:30770030 DOI: https://doi.org/10.1177/1479164119827611

Tahrani AA, Bailey CJ, Del Prato S, Barnett AH. Management of Type 2 diabetes: New and future developments in treatment. Lancet. 2011;378(9786):182-97. https://doi.org/10.1016/s0140-6736(11)60207-9 PMid:21705062 DOI: https://doi.org/10.1016/S0140-6736(11)60207-9

Hung HY, Qian K, Morris-Natschke SL, Hsu CS, Lee KH. Recent discovery of plant-derived anti-diabetic natural products. Nat Prod Rep. 2012;29(5):580-606. https://doi.org/10.1039/c2np00074a PMid:22491825 DOI: https://doi.org/10.1039/c2np00074a

Maiti A, Dewanjee S, Kundu M, Mandal SC. Evaluation of antidiabetic activity of the seeds of Swietenia macrophylla in diabetic rats. Pharm Biol. 2009;47(2):132-6. https://doi.org/10.1080/13880200802436703 DOI: https://doi.org/10.1080/13880200802436703

Kamgang R, Youmbi Mboumi R, Foyet Fondjo A, Fokam Tagne MA, Mengue N’dillé GP, Ngogang Yonkeu J. Antihyperglycaemic potential of the water-ethanol extract of Kalanchoe crenata (Crassulaceae). J Nat Med. 2008;62(1):34-40. https://doi.org/10.1007/s11418-007-0179-y PMid:18404339 DOI: https://doi.org/10.1007/s11418-007-0179-y

Prabhakar PK, Doble M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med. 2011;17(8):563-74. https://doi.org/10.1007/s11655-011-0810-3 PMid:21826590 DOI: https://doi.org/10.1007/s11655-011-0810-3

Moghadamtousi SZ, Goh BH, Chan CK, Shabab T, Kadir HA. Biological activities and phytochemicals of Swietenia macrophylla king. Molecules. 2013;18(9):10465-83. https://doi.org/10.3390/molecules180910465 PMid:23999722 DOI: https://doi.org/10.3390/molecules180910465

Maiti A, Dewanjee S, Jana G, Mandal S. Hypoglycemic effect of Swietenia macrophylla seeds against Type II diabetes. Int J Green Pharm. 2008;2(4):224-7. https://doi.org/10.4103/0973-8258.44738 DOI: https://doi.org/10.4103/0973-8258.44738

Dewanjee S, Maiti A, Das AK, Mandal SC, Dey SP. Swietenine: A potential oral hypoglycemic from Swietenia macrophylla seed. Fitoterapia. 2009;80:249-51. https://doi.org/10.1016/j.fitote.2009.02.004 PMid:19239921 DOI: https://doi.org/10.1016/j.fitote.2009.02.004

Dutta M, Biswas U, Chakraborty R, Banerjee P, Raychaudhuri U. Regeneration of pancreatic β-cells on streptozotocin induced diabetic rats under the effect of Swietenia macrophylla seeds. Int J Green Pharm. 2012;6(4):336-9. https://doi.org/10.4103/0973-8258.108253 DOI: https://doi.org/10.4103/0973-8258.108253

Eid AM, Elmarzugi NA, El-Enshasy HA. A review on the phytopharmacological effect of Swietenia macrophylla. Int J Pharm Pharm Sci. 2013;5(3):47-53.

Maiti A, Dewanjee S, Mandal SC, Annadurai S. Exploration of antimicrobial potential of methanol and water extract of seeds of Swietenia macrophylla (Family: Meliaceae), to substantiate folklore claim. Iran J Pharmacol Ther. 2007;6(1):99-102. DOI: https://doi.org/10.4314/tjpr.v6i2.14650

Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed. 2012;2(4):320-30. https://doi.org/10.1016/s2221-1691(12)60032-x PMid:23569923 DOI: https://doi.org/10.1016/S2221-1691(12)60032-X

Naveen YP, Rupini DG, Ahmed F, Urooj A. Pharmacological effects and active phytoconstituents of Swietenia mahagoni: A review. J Integr Med. 2014;12(2):86-93. https://doi.org/10.1016/s2095-4964(14)60018-2 PMid:24666674 DOI: https://doi.org/10.1016/S2095-4964(14)60018-2

Lau WK, Goh BH, Kadir HA, Shu-Chien AC, Muhammad TS, McPhee DJ. Potent PPARγ ligands from Swietenia macrophylla are capable of stimulating glucose uptake in muscle cells. Molecules. 2015;20(12):22301-14. https://doi.org/10.3390/molecules201219847 PMid:26703529 DOI: https://doi.org/10.3390/molecules201219847

Arumugasamy K, Latha K, Kumar N. Studies on Some Pharmacognostic Profiles of Swietenia Macrophylla. King. Anc Sci Life. 2004;24(2):97-102. PMid:22557161

Durai MV, Balamuniappan G, Geetha S. Phytochemical screening and antimicrobial activity of leaf, seed and centralfruit-axis crude extract of Swietenia macrophylla King. J Pharmacogn Phytochem. 2016;5(3):181-6.

Nugraha A. Molecular Docking and Antihyperglycemic Activity of Active Compounds Which Isolated from Methanol Extract of Swietenia macrophylla King Seeds in Diabetic Rats Induced by Streptozotocin (Translate from Indonesia Language). Yogyakarta: Universitas Gadjah Mada; 2012.

Vigneshwaran LV, Lalitha KG. In silico evaluation of antidiabetic molecules of the seeds of Swietenia mahagoni Jacq. Int J Pharm Phytopharm Res. 2017;6(1):41-9. https://doi.org/10.24896/eijppr.2016617 DOI: https://doi.org/10.24896/eijppr.2016617

Sayyad M, Tiang N, Kumari Y, Goh BH, Jaiswal Y, Rosli R, et al. Acute toxicity profiling of the ethyl acetate fraction of Swietenia macrophylla seeds and in-vitro neuroprotection studies. Saudi Pharm J. 2017;25(2):196-205. https://doi.org/10.1016/j.jsps.2016.05.002 DOI: https://doi.org/10.1016/j.jsps.2016.05.002

Kalaivanan K, Pugalendi KV. Antihyperglycemic effect of the alcoholic seed extract of Swietenia macrophylla on streptozotocin-diabetic rats. Pharmacogn Res. 2011;3(1):67-71. https://doi.org/10.4103/0974-8490.79119 PMid:21731399 DOI: https://doi.org/10.4103/0974-8490.79119

Hashim MA, Yam MF, Hor SY, Lim CP, Asmawi MZ, Sadikun A. Anti-hyperglycaemic activity of Swietenia macrophylla king (meliaceae) seed extracts in normoglycaemic rats undergoing glucose tolerance tests. Chin Med. 2013;8(1):1-8. https://doi.org/10.1186/1749-8546-8-11 PMid:23684219 DOI: https://doi.org/10.1186/1749-8546-8-11

Mursiti S. Isolation Compound Antidiabetes Mellitus from the Seeds of Mahogany (Swietenia macrophylla King) (Translate from Indonesia Language) Doctoral’s Desertation. Yogyakarta: Universitas Gadjah Mada; 2008. Available from: http://www.etd.repository.ugm.ac.id/penelitian/detail/88637. [Last assessed on 2021 Jan 31].

Yusuf M. The Effects of 1,4-bis-(3,4,5-trimetoxy-fenyl)-tetrahydrofuro (3,4-c) Furan Isolate on Insulin Resistance and Expression of IRS-1 Serine 307 Protein in Skeletal Tissues of DM Type 2 Rats Model (Translate from Indonesia Language). Indonesia: Universitas Gadjah Mada; 2016.

Muthmainah M, Yarso KY, Purwanto B, Mudigdo A, Mustofa M. 1,4-bis-3,4,5-trimethoxy-phenyl-tetrahydro-furo(3,4-C) furan from mahogany (Swietenia Macrophylla King) seed significantly reduces glucose and malondialdehyde levels in diabetic wistar rats. Bali Med J. 2019;8(2):570-5. https://doi.org/10.15562/bmj.v8i2.1227 DOI: https://doi.org/10.15562/bmj.v8i2.1227

Prasetyastuti P, Sunarti S, Sadewa AH, Mustofa M. Effect of 7-hydroxy-2-(4-hydroxy-3-methoxy-phenyl)- chroman-4-one (Swietenia macrophylla king seed) on retinol binding protein-4 and phosphoenolpyruvate carboxykinase gene expression in type 2 diabetic rats. Rom J Diabetes Nutr Metab Dis. 2016;23(3):255-65. https://doi.org/10.1515/rjdnmd-2016-0030 DOI: https://doi.org/10.1515/rjdnmd-2016-0030

Prasetyastuti P, Sunarti S, Sadewa AH, Mursiti S, Mustofa M. Effects of 7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-chromen-4 -one from Swietenia macrophylla King seed on oxidized LDL, HOMA beta and Glucagon like peptide 1 (GLP-1) gene expression in Type 2 diabetic rats. Asian J Biochem. 2017;12(3):85-90. https://doi.org/10.3923/ajb.2017.85.90 DOI: https://doi.org/10.3923/ajb.2017.85.90

Singh D, Gawande DY, Singh T, Poroikov V, Goel RK. Revealing pharmacodynamics of medicinal plants using in silico approach: A case study with wet lab validation. Comput Biol Med. 2014;47(1):1-6. https://doi.org/10.1016/j.compbiomed.2014.01.003 PMid:24503467 DOI: https://doi.org/10.1016/j.compbiomed.2014.01.003

Yi F, Li L, Jia XL, Meng H, Mao DY, Bo LH, et al. In silico approach in reveal traditional medicine plants pharmacological material basis. Chin Med. 2018;13(1):1-20. https://doi.org/10.1186/s13020-018-0190-0 DOI: https://doi.org/10.1186/s13020-018-0190-0

Fukuen S, Iwaki M, Yasui A, Makishima M, Matsuda M, Shimomura I. Sulfonylurea agents exhibit peroxisome proliferator-activated receptor γ agonistic activity. J Biol Chem. 2005;280(25):23653-9. https://doi.org/10.1074/jbc.m412113200 PMid:15764598 DOI: https://doi.org/10.1074/jbc.M412113200

Scarsi M, Podvinec M, Roth A, Hug H, Kersten S, Albrecht H, et al. Sulfonylureas and glinides exhibit peroxisome proliferatoractivated receptor γ activity: A combined virtual screening and biological assay approach. Mol Pharmacol. 2007;71(2):398-406. https://doi.org/10.1124/mol.106.024596 PMid:17082235 DOI: https://doi.org/10.1124/mol.106.024596

Guasch L, Sala E, Mulero M, Valls C, Salvadó MJ, Pujadas G, et al. Identification of PPARgamma partial agonists of natural origin (II): In silico prediction in natural extracts with known antidiabetic activity. PLoS One. 2013;8(2):1-10. https://doi.org/10.1371/journal.pone.0055889 PMid:23405231 DOI: https://doi.org/10.1371/journal.pone.0055889

Sahebkar A, Chew GT, Watts GF. New peroxisome proliferator-Activated receptor agonists: Potential treatments for atherogenic dyslipidemia and non-alcoholic fatty liver disease. Expert Opin Pharmacother. 2014;15(4):493-503. https://doi.org/10.1517/14656566.2014.876992 PMid:24428677 DOI: https://doi.org/10.1517/14656566.2014.876992

Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54(8):2460-70. https://doi.org/10.2337/diabetes.54.8.2460 PMid:16046315 DOI: https://doi.org/10.2337/diabetes.54.8.2460

Jain N, Bhansali S, Kurpad AV, Hawkins M, Sharma A, Kaur S, et al. Effect of a dual PPAR α/γ agonist on insulin sensitivity in patients of Type 2 diabetes with hypertriglyceridemia-randomized double-blind placebo-controlled trial. Sci Rep. 2019;9(1):1-9. https://doi.org/10.1038/s41598-019-55466-3 DOI: https://doi.org/10.1038/s41598-019-55466-3

Erion DM, Park HJ, Lee HY. The role of lipids in the pathogenesis and treatment of Type 2 diabetes and associated co-morbidities. BMB Rep. 2016;49(3):139-48. https://doi.org/10.5483/bmbrep.2016.49.3.268 PMid:26728273 DOI: https://doi.org/10.5483/BMBRep.2016.49.3.268

Tumova J, Andel M, Trnka J. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiol Res. 2016;65(2):193-207. https://doi.org/10.33549/physiolres.932993 PMid:26447514 DOI: https://doi.org/10.33549/physiolres.932993

Morón EB, Jiménez ZA, de Marañón AM, Iannantuoni F, López IE, Domènech SL, et al. Relationship between oxidative stress, ER stress, and inflammation in Type 2 diabetes: The battle continues. J Clin Med. 2019;8(9):1-22. https://doi.org/10.3390/jcm8091385 PMid:31487953 DOI: https://doi.org/10.3390/jcm8091385

Mishra BK, Banerjee BD, Agrawal V, Madhu SV. Association of PPARγ gene expression with postprandial hypertriglyceridaemia and risk of Type 2 diabetes mellitus. Endocrine. 2020;68(3):549-56. https://doi.org/10.1007/s12020-020-02257-w PMid:32180115 DOI: https://doi.org/10.1007/s12020-020-02257-w

Aghamohammadzadeh N, Niafar M, Dalir Abdolahinia E, Najafipour F, Gharebaghi SM, Adabi K, et al. The effect of pioglitazone on weight, lipid profile and liver enzymes in Type 2 diabetic patients. Ther Adv Endocrinol Metab. 2015;6(2):56-60. https://doi.org/10.1177/2042018815574229 PMid:25941563 DOI: https://doi.org/10.1177/2042018815574229

Tabassum A, Mahboob T. Role of peroxisome proliferator-activated receptor-gamma activation on visfatin, advanced glycation end products, and renal oxidative stress in obesity-induced Type 2 diabetes mellitus. Hum Exp Toxicol. 2018;37(11):1187-98. https://doi.org/10.1177/0960327118757588 PMid:29441829 DOI: https://doi.org/10.1177/0960327118757588

Tahrani AA, Barnett AH, Bailey CJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol. 2013;1(2):140-51. https://doi.org/10.1016/s2213-8587(13)70050-0 PMid:24622320 DOI: https://doi.org/10.1016/S2213-8587(13)70050-0

Abbas G, Al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg Chem. 2019;86:305-15. https://doi.org/10.1016/j.bioorg.2019.02.009 DOI: https://doi.org/10.1016/j.bioorg.2019.02.009

Lage OM, Ramos MC, Calisto R, Almeida E, Vasconcelos V, Vicente F. Current screening methodologies in drug discovery for selected human diseases. Mar Drugs. 2018;16(8):1-31. https://doi.org/10.3390/md16080279 PMid:30110923 DOI: https://doi.org/10.3390/md16080279

Silvestri A, Vicente F, Vicent MJ, Stechmann B, Fecke W. Academic collaborative models fostering the translation of physiological in vitro systems from basic research into drug discovery. Drug Discov Today. 2021;26(6):1369-81. https://doi.org/10.1016/j.drudis.2021.02.024 DOI: https://doi.org/10.1016/j.drudis.2021.02.024

Hughes JP, Rees SS, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239-49. https://doi.org/10.1111/j.1476-5381.2010.01127.x PMid:21091654 DOI: https://doi.org/10.1111/j.1476-5381.2010.01127.x

Lautaoja JH, Pekkala S, Pasternack A, Laitinen M, Ritvos O, Hulmi JJ. Differentiation of murine C2C12 myoblasts strongly reduces the effects of myostatin on intracellular signaling. Biomolecules. 2020;10(5):1-24. https://doi.org/10.3390/biom10050695 PMid:32365803 DOI: https://doi.org/10.3390/biom10050695

Wong CY, Al-Salami H, Dass CR. C2C12 cell model: Its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol. 2020;72(12):1667-93. https://doi.org/10.1111/jphp.13359 DOI: https://doi.org/10.1111/jphp.13359

Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem Pharmacol. 2014;92(1):73-89. https://doi.org/10.1016/j.bcp.2014.07.018 PMid:25083916 DOI: https://doi.org/10.1016/j.bcp.2014.07.018

Fatemi N, Sanati MH, Shamsara M, Moayer F, Zavarehei MJ, Pouya A, et al. TBHP-induced oxidative stress alters microRNAs expression in mouse testis. J Assist Reprod Genet. 2014;31(10):1287-93. https://doi.org/10.1007/s10815-014-0302-4 PMid:25141839 DOI: https://doi.org/10.1007/s10815-014-0302-4

Kučera O, Endlicher R, Roušar T, Lotková H, Garnol T, Drahota Z, et al. The effect of tert -butyl hydroperoxideinduced oxidative stress on lean and steatotic rat hepatocytes in vitro. Oxid Med Cell Longev. 2014;2014:1-12. https://doi.org/10.1155/2014/752506 DOI: https://doi.org/10.1155/2014/752506

Liang F, Fang Y, Cao W, Zhang Z, Pan S, Xu X. Attenuation of tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in HepG2 cells by tangeretin: Relevance of the Nrf2-ARE and MAPK signaling pathways. J Agric Food Chem. 2018;66(25):6317-25. https://doi.org/10.1021/acs.jafc.8b01875 PMid:29871486 DOI: https://doi.org/10.1021/acs.jafc.8b01875

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70. https://doi.org/10.1161/circresaha.110.223545 PMid:21030723 DOI: https://doi.org/10.1161/CIRCRESAHA.110.223545

Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm J. 2016;24(5):547-53. https://doi.org/10.1016/j.jsps.2015.03.013 PMid:27752226 DOI: https://doi.org/10.1016/j.jsps.2015.03.013

Muthmainah M. Effect of Seeds Isolate from Swietenia macrophylla King in Type 2 Diabetic Rats Model: Molecular Study of Antidiabetic Effect of Isolate 1,4-bis-(3,4,5-Trimetoksifenil)-tetrahidro-furo(3,4-c) Furan (Translate from Indonesia Language). Surakarta: Universitas Sebelas Maret; 2019. https://doi.org/10.26911/mid.icph.2018.05.22 DOI: https://doi.org/10.26911/mid.icph.2018.05.22

Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and Type 2 diabetes mellitus. World J Diabetes. 2015;6(3):456-80. https://doi.org/10.4239/wjd.v6.i3.456 PMid:25897356 DOI: https://doi.org/10.4239/wjd.v6.i3.456

Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA. Role of reactive oxygen species in the progression of Type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010;2010:1-11. https://doi.org/10.1155/2010/453892 PMid:20182627 DOI: https://doi.org/10.1155/2010/453892

Wang J, Wang H. Oxidative stress in pancreatic beta cell regeneration. Oxid Med Cell Longev. 2017;2017:1-9. PMid:28845211 DOI: https://doi.org/10.1155/2017/1930261

Gutch M, Kumar S, Razi SM, Gupta K, Gupta A. Assessment of insulin sensitivity/resistance. Indian J Endocrinol Metab. 2015;19(1):160-4. https://doi.org/10.4103/2230-8210.146874 PMid:25593845 DOI: https://doi.org/10.4103/2230-8210.146874

Singh Y, Garg MK, Tandon N, Marwaha RK. A Study of insulin resistance by HOMA-IR and its cut-off value to identify metabolic syndrome in urban Indian adolescents. JCRPE J Clin Res Pediatr Endocrinol. 2013;5(4):245-51. https://doi.org/10.1515/jpem-2013-0020 PMid:24379034 DOI: https://doi.org/10.1515/jpem-2013-0020

Xiong X, Song Q, Han C, Gan W, Wei S, Liu H, et al. Insulin promotes the expression of the gluconeogenic ratelimiting enzymes phosphoenolpyruvate carboxykinase (pepck) and glucose 6-phosphatase (G6pase) through PI3k/Akt/mTOR signaling pathway in goose hepatocytes. Braz J Poult Sci. 2016;18(3):395-400. https://doi.org/10.1590/1806-9061-2015-0080 DOI: https://doi.org/10.1590/1806-9061-2015-0080

Zhang X, Yang S, Chen J, Su Z. Unraveling the regulation of hepatic gluconeogenesis. Front Endocrinol (Lausanne). 2019;10:1-17. DOI: https://doi.org/10.3389/fendo.2018.00802

Stark R, Guebre-Egziabher F, Zhao X, Feriod C, Dong J, Alves TC, et al. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis. J Biol Chem. 2014;289(11):7257-63. https://doi.org/10.1074/jbc.c113.544759 PMid:24497630 DOI: https://doi.org/10.1074/jbc.C113.544759

Yu S, Meng S, Xiong M, Ma H. Phosphoenolpyruvate carboxykinase in cell metabolism : Roles and mechanisms beyond gluconeogenesis. Mol Metab. 2021;53:101257. https://doi.org/10.1016/j.molmet.2021.101257 PMid:34020084 DOI: https://doi.org/10.1016/j.molmet.2021.101257

Cantley J, Ashcroft FM. Q and A: Insulin secretion and Type 2 diabetes: Why do β-cells fail? BMC Biol. 2015;13(1):33. https://doi.org/10.1186/s12915-015-0140-6 PMid:25982967 DOI: https://doi.org/10.1186/s12915-015-0140-6

Jiang Y, Wang Z, Ma B, Fan L, Yi N, Lu B, et al. GLP-1 improves adipocyte insulin sensitivity following induction of endoplasmic reticulum stress. Front Pharmacol. 2018;9:1168. https://doi.org/10.3389/fphar.2018.01168 PMid:30459598 DOI: https://doi.org/10.3389/fphar.2018.01168

Müller T, Finan B, Bloom S, D’Alessio D, Drucker D, Flatt P, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72-130. PMid:31767182 DOI: https://doi.org/10.1016/j.molmet.2019.09.010

Paternoster S, Falasca M. Dissecting the physiology and pathophysiology of glucagon-like peptide-1. Front Endocrinol (Lausanne). 2018;9:1-26. https://doi.org/10.3389/fendo.2018.00584 PMid:30364192 DOI: https://doi.org/10.3389/fendo.2018.00584

Jeon JY, Choi SE, Ha ES, Lee HB, Kim TH, Han SJ, et al. GLP-1 improves palmitate-induced insulin resistance in human skeletal muscle via SIRT1 activity. Int J Mol Med. 2019;44(3):1161–71. https://doi.org/10.3892/ijmm.2019.4272 PMid:31524229 DOI: https://doi.org/10.3892/ijmm.2019.4272

Jones B, Bloom SR, Buenaventura T, Tomas A, Rutter GA. Control of insulin secretion by GLP-1. Peptides. 2018;100:75-84. https://doi.org/10.1016/j.peptides.2017.12.013 PMid:29412835 DOI: https://doi.org/10.1016/j.peptides.2017.12.013

Manandhar B, Ahn JM. Glucagon-like peptide-1 (GLP-1) analogs: Recent advances, new possibilities, and therapeutic implications. J Med Chem. 2015;58(3):1020-37. https://doi.org/10.1021/jm500810s PMid:25349901 DOI: https://doi.org/10.1021/jm500810s

Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother. 2018;108:656-62. PMid:30245465 DOI: https://doi.org/10.1016/j.biopha.2018.09.058

Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother. 2018;107:306-28. https://doi.org/10.1016/j.biopha.2018.07.157 DOI: https://doi.org/10.1016/j.biopha.2018.07.157

Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1-13. PMid:19061483 DOI: https://doi.org/10.1042/BJ20081386

Rolo AP, Palmeira CM. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 2006;212(2):167-78. https://doi.org/10.1016/j.taap.2006.01.003 PMid:16490224 DOI: https://doi.org/10.1016/j.taap.2006.01.003

Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders-a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066-77. https://doi.org/10.1016/j.bbadis.2016.11.010 PMid:27836629 DOI: https://doi.org/10.1016/j.bbadis.2016.11.010

Apers DC, Willems PH, Koopman WJ, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol. 2015;89(8):1209-26. https://doi.org/10.1007/s00204-015-1520-y PMid:26047665 DOI: https://doi.org/10.1007/s00204-015-1520-y

Dey A, Swaminathan K. Hyperglycemia-induced mitochondrial alterations in liver. Life Sci. 2010;87(7-8):197-214. https://doi.org/10.1016/j.lfs.2010.06.007 PMid:20600152 DOI: https://doi.org/10.1016/j.lfs.2010.06.007

Zeng Y, Pan Q, Wang X, Li D, Lin Y, Man F, et al. Impaired mitochondrial fusion and oxidative phosphorylation triggered by high glucose is mediated by tom22 in endothelial cells. Oxid Med Cell Longev. 2019;2019:1-23. https://doi.org/10.1155/2019/4508762 PMid:31236191 DOI: https://doi.org/10.1155/2019/4508762

Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012-22. https://doi.org/10.1161/circulationaha.109.906610 PMid:20421521 DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.906610

Roy S, Kim D, Sankaramoorthy A. Mitochondrial structural changes in the pathogenesis of diabetic retinopathy. J Clin Med. 2019;8(9):1363. https://doi.org/10.3390/jcm8091363 PMid:31480638 DOI: https://doi.org/10.3390/jcm8091363

Lima JE, Xavier DJ, Hojo ET. Oxidative Stress, DNA Damage and Repair Pathways in Patients. In: Type 2 Diabetes-From Pathophysiology to Modern Management. India: IntechOpen; 2019. p. 16. Available from: https://www.intechopen.com/books/type-2-diabetes-from-pathophysiologyto-modern-management/oxidative-stress-dna-damage-andrepair-pathways-in-patients-with-type-2-diabetes-mellitus. [Last assessed on 2021 Feb 05]. https://doi.org/10.5772/intechopen.85438 DOI: https://doi.org/10.5772/intechopen.85438

Fujita H, Sakamoto T, Komatsu K, Fujishima H, Morii T, Narita T, et al. Reduction of circulating superoxide dismutase activity in Type 2 diabetic patients with microalbuminuria and its modulation by telmisartan therapy. Hypertens Res. 2011;34(12):1302-8. https://doi.org/10.1038/hr.2011.127 PMid:21814206 DOI: https://doi.org/10.1038/hr.2011.127

Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab. 2017;6(2):174-84. https://doi.org/10.1016/j.molmet.2016.12.001 PMid:28180059 DOI: https://doi.org/10.1016/j.molmet.2016.12.001

Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-β links inflammation to obesityinduced insulin resistance. Nat Med. 2005;11(2):191-8. https://doi.org/10.1038/nm1185 PMid:15685170 DOI: https://doi.org/10.1038/nm1185

Shibata T, Takaguri A, Ichihara K, Satoh K. Inhibition of the TNF-α-induced serine phosphorylation of IRS-1 at 636/639 by AICAR. J Pharmacol Sci. 2013;122(2):93-102. https://doi.org/10.1254/jphs.12270fp PMid:23698110 DOI: https://doi.org/10.1254/jphs.12270FP

Mandavia C, Sowers JR. Phosphoprotein phosphatase PP2A regulation of insulin receptor substrate 1 and insulin metabolic signaling. Cardiorenal Med. 2012;2(4):308-13. https://doi.org/10.1159/000343889 PMid:23381670 DOI: https://doi.org/10.1159/000343889

Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O’Callaghan N, Lionetti L, et al. Mitochondrial (dys)function and insulin resistance: From pathophysiological molecular mechanisms to the impact of diet. Front Physiol. 2019;10:1-20. https://doi.org/10.3389/fphys.2019.00532 PMid:31130874 DOI: https://doi.org/10.3389/fphys.2019.00532

Dutta M, Biswas UK, Chakraborty R, Banerjee P, Kumar A, Raychaudhuri U. Enhanced antioxidant enzyme activity in tissues and reduced total oxidative stress in plasma by the effect of Swietenia macrophylla king seeds in Type II diabetes rats. Int J Herb Med IJHM. 2014;1(16):31-6. https://doi.org/10.1007/s13410-012-0109-8 DOI: https://doi.org/10.1007/s13410-012-0109-8

Caimi G, Lo Presti R, Montana M, Noto D, Canino B, Averna MR, et al. Lipid peroxidation, nitric oxide metabolites, and their ratio in a group of subjects with metabolic syndrome. Oxid Med Cell Longev. 2014;2014:824756. https://doi.org/10.1155/2014/824756 PMid:24987495 DOI: https://doi.org/10.1155/2014/824756

Kumar V, Abbas AK, editor. Basic Pathology. 9th ed. Canada: Elsevier Sounders; 2013.

Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr. 2020;12(1):1-10. https://doi.org/10.1186/s13098-020-0523-x PMid:32082422 DOI: https://doi.org/10.1186/s13098-020-0523-x

Kalpana K, Pugalendi KV. Antioxidative and hypolipidemic efficacy of alcoholic seed extract of Swietenia macrophylla in streptozotocin diabetic rats. J Basic Clin Physiol Pharmacol. 2011;22(1-2):11-21. https://doi.org/10.1515/jbcpp.2011.001 PMid:22865358 DOI: https://doi.org/10.1515/jbcpp.2011.001

Ghemrawi R, Battaglia-Hsu SF, Arnold C. Endoplasmic reticulum stress in metabolic disorders. Cells. 2018;7(6):1-35. https://doi.org/10.20944/preprints201805.0264.v1 PMid:29921793 DOI: https://doi.org/10.3390/cells7060063

Salvadó L, Palomer X, Barroso E, Vázquez-Carrera M. Targeting endoplasmic reticulum stress in insulin resistance. Trends Endocrinol Metab. 2015;26(8):438-48. https://doi.org/10.1016/j.tem.2015.05.007 PMid:26078196 DOI: https://doi.org/10.1016/j.tem.2015.05.007

Flamment M, Hajduch E, Ferré P, Foufelle F. New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab. 2012;23(8):381-90. https://doi.org/10.1016/j.tem.2012.06.003 PMid:22770719 DOI: https://doi.org/10.1016/j.tem.2012.06.003

Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes. J Mol Endocrinol. 2016;56(2):33-54. PMid:26576641 DOI: https://doi.org/10.1530/JME-15-0232

Labra RV, Subiabre M, Toledo F, Pardo F, Sobrevia L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med. 2019;66:49-61. https://doi.org/10.1016/j.mam.2018.11.001 PMid:30472165 DOI: https://doi.org/10.1016/j.mam.2018.11.001

Cernea S, Dobreanu M. Diabetes and beta cell function: From mechanisms to evaluation and clinical implications. Biochem Medica. 2013;23(3):266-80. https://doi.org/10.11613/bm.2013.033 PMid:24266296 DOI: https://doi.org/10.11613/BM.2013.033

Montane J, Cadavez L, Novials A. Stress and the inflammatory process: A major cause of pancreatic cell death in Type 2 diabetes. Diabetes Metab Syndr Obes Targets Ther. 2014;7:25-34. https://doi.org/10.2147/dmso.s37649 PMid:24520198 DOI: https://doi.org/10.2147/DMSO.S37649

Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants Redox Signal. 2014;21(3):396-413. https://doi.org/10.1089/ars.2014.5851 PMid:24702237 DOI: https://doi.org/10.1089/ars.2014.5851

Katsube H, Hinami Y, Yamazoe T, Inoue YH. Endoplasmic reticulum stress-induced cellular dysfunction and cell death in insulin-producing cells results in diabetes-like phenotypes in Drosophila. Biol Open. 2019;8(12):1-12. https://doi.org/10.1242/bio.046524 PMid:31822470 DOI: https://doi.org/10.1242/bio.046524

Suryavanshi SV, Kulkarni YA. NF-κβ: A potential target in the management of vascular complications of diabetes. Front Pharmacol. 2017;8:1-12. https://doi.org/10.3389/fphar.2017.00798 PMid:29163178 DOI: https://doi.org/10.3389/fphar.2017.00798

Liu X. Research progresses of the mechanism of insulin resistance in Type II diabetes. E3S Web Conf. 2019;78:1-6. https://doi.org/10.1051/e3sconf/20197801006 DOI: https://doi.org/10.1051/e3sconf/20197801006

Brown M, Dainty S, Strudwick N, Mihai AD, Watson JN, Dendooven R, et al. Endoplasmic reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized insulin receptors to the cell surface. Mol Biol Cell. 2020;31(23):2597-629. https://doi.org/10.1091/mbc.e18-01-0013 PMid:32877278 DOI: https://doi.org/10.1091/mbc.E18-01-0013

Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J Biomed Sci. 2016;23(1):1-18. https://doi.org/10.1186/s12929-016-0303-y PMid:27912756 DOI: https://doi.org/10.1186/s12929-016-0303-y

Supriady H, Kamarudin MN, Chan CK, Goh BH, Kadir HA. SMEAF attenuates the production of pro-inflammatory mediators through the inactivation of Akt-dependent NF-κB, p38 and ERK1/2 pathways in LPS-stimulated BV-2 microglial cells. J Funct Foods. 2015;17:434-48. https://doi.org/10.1016/j.jff.2015.05.042 DOI: https://doi.org/10.1016/j.jff.2015.05.042

Soskic SS. Regulation of inducible nitric oxide synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure. Open Cardiovasc Med J. 2011;5(1):153-63. https://doi.org/10.2174/1874192401105010153 PMid:21792376 DOI: https://doi.org/10.2174/1874192401105010153

Ropelle ER, Pauli JR, Cintra DE, Da Silva AS, De Souza CT, Guadagnini D, et al. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. Diabetes. 2013;62(2):466-70. https://doi.org/10.2337/db12-0339 PMid:22991447 DOI: https://doi.org/10.2337/db12-0339

Coll T, Palomer X, Blanco-Vaca F, Escolà-Gil JC, Sánchez RM, Laguna JC, et al. Cyclooxygenase 2 inhibition exacerbates palmitate-induced inflammation and insulin resistance in skeletal muscle cells. Endocrinology. 2010;151(2):537-48. https://doi.org/10.1210/en.2009-0874 PMid:20022932 DOI: https://doi.org/10.1210/en.2009-0874

Ma X, Chen Z, Wang L, Wang G, Wang Z, Dong XB, et al. The pathogenesis of diabetes mellitus by oxidative stress and inflammation: Its inhibition by berberine. Front Pharmacol. 2018;9:1-13. https://doi.org/10.3389/fphar.2018.00782 PMid:30100874 DOI: https://doi.org/10.3389/fphar.2018.00782

Qi J, Wu Q, Cheng Q, Chen X, Zhu M, Miao C. High glucose induces endothelial COX2 and iNOS expression via inhibition of monomethyltransferase SETD8 expression. J Diabetes Res. 2020;2020:1-10. https://doi.org/10.1155/2020/2308520 DOI: https://doi.org/10.1155/2020/2308520

Huang X, Liu G, Guo J, Su ZQ. The PI3K/AKT pathway in obesity and Type 2 diabetes. Int J Biol Sci. 2018;14(11):1483-96. https://doi.org/10.7150/ijbs.27173 PMid:30263000 DOI: https://doi.org/10.7150/ijbs.27173

Feng J, Lu S, Ou B, Liu Q, Dai J, Ji C, et al. The role of JNK signaling pathway in obesity-driven insulin resistance. Diabetes Metab Syndr Obes Targets Ther. 2020;13:1399-406. https://doi.org/10.2147/dmso.s236127 PMid:32425571 DOI: https://doi.org/10.2147/DMSO.S236127

Yang R, Wang L, Xie J, Li X, Liu S, Qiu S, et al. Treatment of Type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in vitro and in vivo using cajanonic acid A. Int J Mol Med. 2018;42(5):2329-42. https://doi.org/10.3892/ijmm.2018.3836 PMid:30226559 DOI: https://doi.org/10.3892/ijmm.2018.3836

Mackenzie RW, Elliott BT. Akt/PKB activation and insulin signaling: A novel insulin signaling pathway in the treatment of Type 2 diabetes. Diabetes Metab Syndr Obes. 2014;7:55-64. https://doi.org/10.2147/dmso.s48260 PMid:24611020 DOI: https://doi.org/10.2147/DMSO.S48260

Saini V. Molecular mechanisms of insulin resistance in Type 2 diabetes mellitus. World J Diabetes. 2010;1(3):68-75. https://doi.org/10.4239/wjd.v1.i3.68 PMid:21537430 DOI: https://doi.org/10.4239/wjd.v1.i3.68

Tikhanovich I, Cox J, Weinman SA. Forkhead box class O transcription factors in liver function and disease. J Gastroenterol Hepatol. 2013;28(1):125-31. https://doi.org/10.1111/jgh.12021 PMid:23855308 DOI: https://doi.org/10.1111/jgh.12021

Boughanem H, Mulero AC, Gómez MM, Sánchez LG, Cardona F, Tinahones FJ, et al. Transcriptional Analysis of FOXO1, C/EBP-α and PPAR-γ2 genes and their association with obesityrelated insulin resistance. Genes (Basel). 2019;10(706):1-14. https://doi.org/10.3390/genes10090706 PMid:31547433 DOI: https://doi.org/10.3390/genes10090706

Ren W, Cheema S, Du K. The association of ClipR-59 protein with AS160 modulates AS160 protein phosphorylation and adipocyte Glut4 protein membrane translocation. J Biol Chem. 2012;287(32):26890-900. https://doi.org/10.1074/jbc.m112.357699 PMid:22689584 DOI: https://doi.org/10.1074/jbc.M112.357699

Guo S. Insulin signaling, resistance, and metabolic syndrome: Insights from mouse models into disease mechanisms. J Endocrinol. 2014;220(2):1-23. https://doi.org/10.1530/joe-13-0327 PMid:24281010 DOI: https://doi.org/10.1530/JOE-13-0327

Russo B, Picconi F, Malandrucco I, Frontoni S. Flavonoids and insulin-resistance: From molecular evidences to clinical trials. Int J Mol Sci. 2019;20:1-18. https://doi.org/10.3390/ijms20092061 PMid:31027340 DOI: https://doi.org/10.3390/ijms20092061

Wu J, Cheng D, Liu L, Lv Z, Liu K. TBC1D15 affects glucose uptake by regulating GLUT4 translocation. Gene. 2019;683:210-5. https://doi.org/10.1016/j.gene.2018.10.025 PMid:30316925 DOI: https://doi.org/10.1016/j.gene.2018.10.025

Chen LC, Liao HR, Chen PY, Kuo WL, Chang TH, Sung PJ, et al. Limonoids from the seeds of Swietenia macrophylla and their anti-inflammatory activities. Molecules. 2015;20(10):18551-64. https://doi.org/10.3390/molecules201018551 PMid:26473818 DOI: https://doi.org/10.3390/molecules201018551

Assmann TS, Brondani LA, Bouças AP, Rheinheimer J, de Souza BM, Canani LH, et al. Nitric oxide levels in patients with diabetes mellitus: A systematic review and meta-analysis. Nitric Oxide Biol Chem. 2016;61:1-9. https://doi.org/10.1016/j.niox.2016.09.009 PMid:27677584 DOI: https://doi.org/10.1016/j.niox.2016.09.009

Levine AB, Punihaole D, Levine TB. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012;122(1):55-68. https://doi.org/10.1159/000338150 PMid:22722323 DOI: https://doi.org/10.1159/000338150

Chen Y, Ruan J, Sun F, Wang H, Yang S, Zhang Y, et al. Antiinflammatory limonoids from cortex dictamni. Front Chem. 2020;8:1-12. https://doi.org/10.3389/fchem.2020.00073 PMid:32185157 DOI: https://doi.org/10.3389/fchem.2020.00073

Magallanes BO, Campos ON, Chaverri JP, Mata R. Hypoglycemic and antihyperglycemic effects of phytopreparations and limonoids from Swietenia humilis. Phytochemistry. 2015;110:111-9. https://doi.org/10.1016/j.phytochem.2014.11.004 PMid:25534951 DOI: https://doi.org/10.1016/j.phytochem.2014.11.004

Sarian MN, Ahmed QU, Mat So’Ad SZ, Alhassan AM, Murugesu S, Perumal V, et al. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. Biomed Res Int. 2017;2017:8386065. https://doi.org/10.1155/2017/8386065 PMid:29318154 DOI: https://doi.org/10.1155/2017/8386065

Gothai S, Ganesan P, Park SY, Fakurazi S, Choi DK, Arulselvan P. Natural phyto-bioactive compounds for the treatment of Type 2 diabetes: Inflammation as a target. Nutrients. 2016;8(461):1-28. https://doi.org/10.3390/nu8080461 PMid:27527213 DOI: https://doi.org/10.3390/nu8080461

Chen J, Mangelinckx S, Adams A, Wang ZT, Li WL, De Kimpe N. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Nat Prod Commun. 2015;10(1):187-200. https://doi.org/10.1177/1934578x1501000140 PMid:25920244 DOI: https://doi.org/10.1177/1934578X1501000140

Fu Z, Zhang W, Zhen W, Lum H, Nadler J, Bassaganya-Riera J, et al. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulindeficient diabetes in mice. Endocrinology. 2010;151(7):3026-37. https://doi.org/10.1210/en.2009-1294 PMid:20484465 DOI: https://doi.org/10.1210/en.2009-1294

Huang Y, Zhou T, Zhang Y, Huang H, Ma Y, Wu C, et al. Antidiabetic activity of a Flavonoid-rich extract from flowers of Wisteria sinensis in Type 2 diabetic mice via activation of the IRS-1/PI3K/Akt/GLUT4 pathway. J Funct Foods. 2021;77:1-12. https://doi.org/10.1016/j.jff.2020.104338 DOI: https://doi.org/10.1016/j.jff.2020.104338

Jiang S, Xu L, Xu Y, Guo Y, Wei L, Li X, et al. Antidiabetic effect of Momordica charantia saponins in rats induced by high-fat diet combined with STZ. Electron J Biotechnol. 2020;43:41-7. https://doi.org/10.1016/j.ejbt.2019.12.001 DOI: https://doi.org/10.1016/j.ejbt.2019.12.001

Zhang H, Xu J, Wang M, Xia X, Dai R, Zhao Y. Steroidal saponins and sapogenins from fenugreek and their inhibitory activity against α-glucosidase. Steroids. 2020;161:1-7. https://doi.org/10.1016/j.steroids.2020.108690 DOI: https://doi.org/10.1016/j.steroids.2020.108690

Xu J, Wang S, Feng T, Chen Y, Yang G. Hypoglycemic and hypolipidemic effects of total saponins from Stauntonia chinensis in diabetic db/db mice. J Cell Mol Med. 2018;22(12):6026-38. https://doi.org/10.1111/jcmm.13876 PMid:30324705 DOI: https://doi.org/10.1111/jcmm.13876

Mendes MF, David I, Bogle L. Evaluation of the effects and mechanisms of bioactive components present in hypoglycemic plants. Int J Chem Biomol Sci. 2015;1(3):167-78.

Elekofehinti OO. Saponins: Anti-diabetic principles from medicinal plants-a review. Pathophysiology. 2015;22(2):95-103. https://doi.org/10.1016/j.pathophys.2015.02.001 PMid:25753168 DOI: https://doi.org/10.1016/j.pathophys.2015.02.001

Nalbantsoy A, Karabay Y, Sayim F, Deliloglu GI, Gocmen B, Arikan H, et al. Determination of in vivo toxicity and in vitro cytotoxicity of venom from the Cypriot blunt-nosed viper Macrovipera lebetina lebetina and antivenom production. J Venom Anim Toxins Incl Trop Dis. 2012;18(2):208-16. https://doi.org/10.1590/s1678-91992012000200011 DOI: https://doi.org/10.1590/S1678-91992012000200011

Syaiful RH. The effect of 1,4-bis-(3,4,5-trimetoksi-fenil)-tetrahidrofuro (3,4c) Furan Which Isolated from the Seed Extract of Swietenia macrophylla King on cell Viability: Exploration on Cell Vero’s DNA (Translate from Indonesia Language). Yogyakarta: Universitas Gadjah Mada; 2016.

Fielden MR, Kolaja KL. The role of early in vivo toxicity testing in drug discovery toxicology. Expert Opin Drug Saf. 2008;7(2):107-10. https://doi.org/10.1517/14740338.7.2.107 PMid:18324874 DOI: https://doi.org/10.1517/14740338.7.2.107

Balijepalli MK, Suppaiah V, Chin AM, Buru AS, Sagineedu SR, Pichika MR. Acute oral toxicity studies of Swietenia macrophylla seeds in sprague dawley rats. Pharmacognosy Res. 2015;7(1):38-44. https://doi.org/10.4103/0974-8490.147197 PMid:25598633 DOI: https://doi.org/10.4103/0974-8490.147197

Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM. Brine shrimp lethality and acute oral toxicity studies on Swietenia mahagoni (Linn.) Jacq. seed methanolic extract. Pharmacogn Res. 2010;2(4):215-20. https://doi.org/10.4103/0974-8490.69107 PMid:21808570 DOI: https://doi.org/10.4103/0974-8490.69107

Downloads

Published

2021-09-12

How to Cite

1.
Yudhani RD, Nugrahaningsih DAA, Sholikhah EN, Mustofa M. The Molecular Mechanisms of Hypoglycemic Properties and Safety Profiles of Swietenia Macrophylla Seeds Extract: A Review. Open Access Maced J Med Sci [Internet]. 2021 Sep. 12 [cited 2024 Nov. 7];9(F):370-88. Available from: https://oamjms.eu/index.php/mjms/article/view/6972

Issue

Section

Narrative Review Article

Categories