Role of Monocyte-to-lymphocyte Ratio, Mean Platelet Volume-to-Platelet Count Ratio, C-Reactive Protein and Erythrocyte Sedimentation Rate as Predictor of Severity in Secondary Traumatic Brain Injury: A Literature Review

Authors

  • Tjokorda Istri Sri Dalem Natakusuma Postgraduate Degree Program, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
  • Tjokorda Gde Bagus Mahadewa Department of Surgery https://orcid.org/0000-0002-4445-4085
  • Putu Eka Mardhika Department of Surgery https://orcid.org/0000-0002-2260-9437
  • Sri Maliawan Department of Surgery, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia https://orcid.org/0000-0003-2389-3481
  • Tjokorda Gde Agung Senapathi Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
  • Christopher Ryalino Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia https://orcid.org/0000-0001-9618-6230

DOI:

https://doi.org/10.3889/oamjms.2021.6985

Keywords:

C-reactive protein, Erythrocyte sedimentation rate, Inflammation, Mean platelet volume to platelet count ratio, Monocyte to lymphocyte ratio, Traumatic brain injury

Abstract

BACKGROUND: Secondary traumatic brain injury (TBI) is injury to the brain following primary TBI because of neuroinflammation as consequences of neuronal and glial cell injury which cause release of various inflammation cytokine and chemokine. Biomarker examination to predict the severity of secondary TBI is important to provide appropriate treatment to the patient. This article reviews possibility several common laboratory parameter such as monocyte-to-lymphocyte ratio (MLR), mean platelet volume-to-platelet count (PC) ratio (MPV-PCR), c-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) to predict severity of secondary TBI.

LITERATURE REVIEW: TBI activates microglia which increase infiltration and proliferation of monocyte. Neuroinflammation also increases thrombopoiesis which leads to increase megakaryocytes production. In the other hand, due to disruption of brain blood vessels because of trauma, coagulation cascade is also activated and leads to consumptive coagulopathy. These are reflected as high monocyte count, low PC, and high MPV. Lymphocyte count is reported low in TBI especially in poor outcome patients. CRP is an acute phase reactant that increased in inflammation condition. In TBI, increased production of Interleukin-6 leads to increase CRP production. In head injured patients, ESR level does not increase significantly in the acute phase of inflammation but last longer when compared to CRP.

CONCLUSION: MLR, MPV-PCR, CRP, and ESR could be predictor of severity in secondary TBI.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9(4):231-6. https://doi.org/10.1038/nrneurol.2013.22 PMid:23443846 DOI: https://doi.org/10.1038/nrneurol.2013.22

Shi HY, Hwang SL, Lee KT, Lin CL. Temporal trends and volumeoutcome associations after traumatic brain injury: A 12-year study in Taiwan. J Neurosurg. 2013;118(4):732-8. https://doi.org/10.3171/2012.12.jns12693 PMid:23350773 DOI: https://doi.org/10.3171/2012.12.JNS12693

Williams OH, Tallantyre EC, Robertson NP. Traumatic brain injury: Pathophysiology, clinical outcome and treatment. J Neurol. 2015;262(5):1394-6. https://doi.org/10.1007/s00415-015-7741-4 PMid:25904204 DOI: https://doi.org/10.1007/s00415-015-7741-4

Werner JK, Stevens RD. Traumatic brain injury: Recent advances in plasticity and regeneration. Curr Opin Neurol. 2015;28(6):565-73. https://doi.org/10.1097/WCO.0000000000000265 PMid:26544030 DOI: https://doi.org/10.1097/WCO.0000000000000265

Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): Friend or foe? J Neuroinflammation. 2018;15(1):146. https://doi.org/10.1186/s12974-018-1173-x PMid:29776443 DOI: https://doi.org/10.1186/s12974-018-1173-x

Walsh KB, Sekar P, Langefeld CD, Moomaw CJ, Elkind MS, Boehme AK, et al. Monocyte count and 30-day case fatality in intracerebral hemorrhage. Stroke. 2015;46(8):2302-4. https://doi.org/10.1161/strokeaha.115.009880 PMid:26130090 DOI: https://doi.org/10.1161/STROKEAHA.115.009880

Pan L, Du J, Li T, Liao H. Platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio associated with disease activity in patients with Takayasu’s arteritis: A case-control study. BMJ Open. 2017;7(4):e014451. https://doi.org/10.1136/bmjopen-2016-014451 PMid:28473512 DOI: https://doi.org/10.1136/bmjopen-2016-014451

Azab B, Shah N, Akerman M, McGinn JT Jr. Value of platelet/lymphocyte ratio as a predictor of all-cause mortality after non-ST-elevation myocardial infarction. J Thromb Thrombolysis. 2012;34(3):326-34. https://doi.org/10.1007/s11239-012-0718-6 PMid:22466812 DOI: https://doi.org/10.1007/s11239-012-0718-6

Pearn M, Niesman I, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, et al. Pathophysiology associated with traumatic brain injury: Current treatments and potential novel therapeutics. Cell Mol Neurobiol. 2016;37(4):571-85. https://doi.org/10.1007/s10571-016-0400-1 PMid:27383839 DOI: https://doi.org/10.1007/s10571-016-0400-1

Corrigan F, Mander K, Leonard A, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation. 2016;13(1):264. https://doi.org/10.1186/s12974-016-0738-9 PMid:27724914 DOI: https://doi.org/10.1186/s12974-016-0738-9

Finnie J. Neuroinflammation: Beneficial and detrimental effects after traumatic brain injury. Inflammopharmacology. 2013;21(4):309-20. https://doi.org/10.1007/s10787-012-0164-2 PMid:23296919 DOI: https://doi.org/10.1007/s10787-012-0164-2

Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol. 2019;178:101610. https://doi.org/10.1016/j.pneurobio.2019.03.003 PMid:30923023 DOI: https://doi.org/10.1016/j.pneurobio.2019.03.003

Winkler E, Minter D, Yue J, Manley G. Cerebral edema in traumatic brain injury. Neurosurg Clin North Am. 2016;27(4):473-88. http://doi.org/10.1016/j.nec.2016.05.008 PMid:27637397 DOI: https://doi.org/10.1016/j.nec.2016.05.008

Sulhan S, Lyon K, Shapiro L, Huang J. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: Pathophysiology and potential therapeutic targets. J Neurosci Res. 2018;98(1):19-28. http://doi.org/10.1002/jnr.24331 PMid:30259550 DOI: https://doi.org/10.1002/jnr.24331

Jassam Y, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: Time for a paradigm shift. Neuron. 2017;95(6):1246-65. http://doi.org/10.1016/j.neuron.2017.07.010 PMid:28910616 DOI: https://doi.org/10.1016/j.neuron.2017.07.010

Anthonymuthu T, Kenny E, Lamade A, Kagan VE, Bayır H. Oxidized phospholipid signaling in traumatic brain injury. Free Rad Biol Med. 2018;124:493-503. http://doi.org/10.1016/j.freeradbiomed.2018.06.031 PMid:29964171 DOI: https://doi.org/10.1016/j.freeradbiomed.2018.06.031

Simon D, McGeachy M, Bayır H, Clark RS, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171-91. http://doi.org/10.1038/nrneurol.2017.13 PMid:28186177 DOI: https://doi.org/10.1038/nrneurol.2017.13

Plesnila N. The immune system in traumatic brain injury. Curr Opin Pharmacol. 2016;26:110-7. http://doi.org/10.1016/j.coph.2015.10.008 PMid:26613129 DOI: https://doi.org/10.1016/j.coph.2015.10.008

Murray P. Immune regulation by monocytes. Semin Immunol. 2018;35:12-8. http://doi.org/10.1016/j.smim.2017.12.005 PMid:29290545 DOI: https://doi.org/10.1016/j.smim.2017.12.005

Gliem M, Schwaninger M. Jander S. Protective features of peripheral monocytes/macrophages in stroke. Biochim Biophys Acta. 2016;1862(3):329-38. http://doi.org/10.1016/j.bbadis.2015.11.004 PMid:26584587 DOI: https://doi.org/10.1016/j.bbadis.2015.11.004

Hsieh C, Kim C, Ryba B, Niemi EC, Bando JK, Locksley RM, et al. Traumatic brain injury induces macrophage subsets in the brain. Euro J Immunol. 2013;43(8):2010-22. http://doi.org/10.1002/eji.201243084 PMid:23630120 DOI: https://doi.org/10.1002/eji.201243084

Morganti J, Jopson T, Liu S, Riparip LK, Guandique CK, Gupta N, et al. CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury. J Neurosci. 2015;35(2):748-60. http://doi.org/10.1523/JNEUROSCI.2405-14.2015 PMid:25589768 DOI: https://doi.org/10.1523/JNEUROSCI.2405-14.2015

Svoboda P, Kantorova I, Ochmann J. Dynamics of interleukin 1,2, and 6 and tumor-necrosis factor alpha in multiple trauma patients. J Trauma. 1994;36(3):336-40. http://doi.org/10.1097/00005373-199403000-00009 PMid:8145312 DOI: https://doi.org/10.1097/00005373-199403000-00009

Ferguson KL, Taheri P, Rodriguez J, Tonapi V, Cardellio A, Dechert R. Tumor necrosis factor activity increases in the early response to trauma. Acd Emerg Med. 1997;4:1035-40. http://doi.org/10.1111/j.1553-2712.1997.tb03676.x PMid:9383488 DOI: https://doi.org/10.1111/j.1553-2712.1997.tb03676.x

Yolcu S, Beceren GN, Tomruk O, Doguc DK, Balbaloglu O. Can mean platelet volume levels of trauma patients predict severity of trauma? Platelets. 2014;25(4):279-84. http://doi.org/10.3109/09537104.2013.809410 PMid:23855431 DOI: https://doi.org/10.3109/09537104.2013.809410

Nast-Kolb D, Waydhas C, Gippner-Steppert C, Schneider I, Trupka A, Ruchholtz S, et al. Indicators of the posttraumatic inflammatory response correlate with organ failure in patients with multiple injuries. J Trauma. 1997;42(3):446-54; discussion 454-5. http://doi.org/10.1097/00005373-199703000-00012 PMid:9095112 DOI: https://doi.org/10.1097/00005373-199703000-00012

Sweeney M, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: From physiology to disease and back. Physiol Rev. 2019;99(1):21-78. http://doi.org/10.1152/physrev.00050.2017 PMid:30280653 DOI: https://doi.org/10.1152/physrev.00050.2017

Hubbard W, Dong J, Cruz M, Rumbaut R. Links between thrombosis and inflammation in traumatic brain injury. Thrombosis Res. 2021;198:62-71. http://doi.org/10.1016/j.thromres.2020.10.041 PMid:33290884 DOI: https://doi.org/10.1016/j.thromres.2020.10.041

Nagelhus EA, Ottersen OP. Physiologic roles of aquaporin-4 in brain. Physiol Rev. 2013;93(4):1543-62. http://doi.org/10.1152/physrev.00011.2013 PMid:24137016 DOI: https://doi.org/10.1152/physrev.00011.2013

Qureshi A, Suarez J. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med. 2000;28(9):3301-13. http://doi.org/10.1097/00003246-200009000-00032 PMid:11008996 DOI: https://doi.org/10.1097/00003246-200009000-00032

Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV. Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochir Suppl. 2006;96:444-50. http://doi.org/10.1007/3-211-30714-1_91 PMid:16671502 DOI: https://doi.org/10.1007/3-211-30714-1_91

Aertker B, Kumar A, Prabhakara KS, Smith P, Furman NE, Hasen X, et al. Pre‐injury monocyte/macrophage depletion results in increased blood-brain barrier permeability after traumatic brain injury. J Neurosci Res. 2019;97(6):698-707. http://doi.org/10.1002/jnr.24395 PMid:30746753 DOI: https://doi.org/10.1002/jnr.24395

Strehl C, Fangradt M, Fearon U, Gaber T, Buttgereit F, Veale DJ. Hypoxia: How does the monocyte-macrophage system respond to changes in oxygen availability? J Leuko Biol. 2013;95(2):233-41. http://doi.org/10.1189/jlb.1212627 PMid:24168857 DOI: https://doi.org/10.1189/jlb.1212627

Perego C, Fumagalli S, Zanier E, Carlino E, Panini N, Erba E, et al. Macrophages are essential for maintaining a M2 protective response early after ischemic brain injury. Neurobiol Dis. 2016;96:284-93. http://doi.org/10.1016/j.nbd.2016.09.017 PMid:27697537 DOI: https://doi.org/10.1016/j.nbd.2016.09.017

Thomson SP, McMahon LJ, Nugent CA. Endogenous cortisol: A regulator of the number of lymphocytes in peripheral blood. Clin Immunol Immunopathol. 1980;17(4):506-14. http://doi.org/10.1016/0090-1229(80)90146-4 PMid:7192197 DOI: https://doi.org/10.1016/0090-1229(80)90146-4

Zouridakis EG, Garcia-Moll X, Kaski JC. Usefulness of the blood lymphocyte count in predicting recurrent instability and death in patients with unstable angina pectoris. Am J Cardiol. 2000;86(4):449-51. http://doi.org/10.1016/s0002-9149(00)00963-2 PMid:10946041 DOI: https://doi.org/10.1016/S0002-9149(00)00963-2

Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: A link between thrombosis and inflammation? Curr Pharm Des. 2011;17(1):47-58. http://doi.org/10.2174/138161211795049804 PMid:21247392 DOI: https://doi.org/10.2174/138161211795049804

Nurden A. The biology of the platelet with special reference to inflammation wound healing and immunity. Front Biosci. 2018;23(2):726-51. http://doi.org/10.2741/4613 PMid:28930569 DOI: https://doi.org/10.2741/4613

Dukhinova M, Kuznetsova I, Kopeikina E, Veniaminova E, Yung AW, Veremeyko T, et al. Platelets mediate protective neuroinflammation and promote neuronal plasticity at the site of neuronal injury. Brain Behavior Immun. 2018;74:7-27. http://doi.org/10.1016/j.bbi.2018.09.009 PMid:30217533 DOI: https://doi.org/10.1016/j.bbi.2018.09.009

Van der Loo B, Martin JF. A role for changes in platelet production in the cause of acute coronary syndromes. Arterioscler Thromb Vasc Biol. 1999;19(3):672-9. http://doi.org/10.1161/01.atv.19.3.672 PMid:10073972 DOI: https://doi.org/10.1161/01.ATV.19.3.672

Owings JT, Bagley M, Gosselin R, Romac D, Disbrow E. Effect of critical injury on plasma antithrombin activity: Low antithrombin levels are associated with thromboembolic complications. J Trauma. 1996;41:396-406. http://doi.org/10.1097/00005373-199609000-00004 PMid:8810955 DOI: https://doi.org/10.1097/00005373-199609000-00004

Miller RS, Weatherford DA, Stein D, Crane MM, Stein M. Antithrombin III and trauma patients: Factors that determine low levels. J Trauma. 1994;37:442-5. PMid:8083907 DOI: https://doi.org/10.1097/00005373-199409000-00019

Andrews RK, Lopez JA, Berndt MC. Molecular mechanisms of platelet adhesion and activation. Int J Biochem Cell Biol. 1997;29(1):91-105. http://doi.org/10.1016/s1357-2725(96)00122-7 PMid:9076944 DOI: https://doi.org/10.1016/S1357-2725(96)00122-7

Walsh PN, Griffin JH. Contributions of human platelets to the proteolytic activation of blood coagulation factors XII and XI. Blood. 1981;57(1):106-18. PMid:7004531 DOI: https://doi.org/10.1182/blood.V57.1.106.106

Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest. 2005;115(12):3339-47. http://doi.org/10.1172/JCI26674 PMid:16322778 DOI: https://doi.org/10.1172/JCI26674

Kalish H, Phillips TM. Application of immunoaffinity capillary electrophoresis to the measurements of secreted cytokines by cultured astrocytes. J Sep Sci. 2009;32(10):1605-12. http://doi.org/10.1002/jssc.200900047 PMid:19472286 DOI: https://doi.org/10.1002/jssc.200900047

Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med. 2006;354(19):2034-45. http://doi.org/10.1056/NEJMra052706 PMid:16687716 DOI: https://doi.org/10.1056/NEJMra052706

Kusuma G, Maliawan S, Mahadewa T, Senapathi TG, Lestari AA, Muliarta IM. Neutrophil-to-lymphocyte ratio and platelet-tolymphocyte ratio correlations with C-reactive protein and erythrocyte sedimentation rate in traumatic brain injury. Open Access Macedonian J Med Sci. 2020;8(B):1185-92. https://doi.org/10.3889/oamjms.2020.5544 DOI: https://doi.org/10.3889/oamjms.2020.5544

Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol. 2016;275(3):316-27. http://doi.org/10.1016/j.expneurol.2015.08.018 PMid:26342753 DOI: https://doi.org/10.1016/j.expneurol.2015.08.018

Miyazaki H, Kato T. Thrombopoietin: Biology and clinical potentials. Int J Hematol. 1999;70(4):216-25. PMid:10643146

Alexandrakis MG, Passam FH, Perisinakis K, Ganotakis E, Margantinis G, Kyriakou DS, et al. Serum proinflammatory cytokines and its relationship to clinical parametes in lung cancer patients with reactive thrombosytosis. Respir Med. 2002;96(8):553-8. http://doi.org/10.1053/rmed.2002.1328 PMid:12195834 DOI: https://doi.org/10.1053/rmed.2002.1328

Alexandrakis MG, Passam FH, Moschandrea IA, Christophoridou AV, Pappa CA, Coulocheri SA, et al. Levels of serum cytokines and acute phase proteins in patients with essential and cancerrelated thrombocytosis. Am J Clin Oncol. 2003;26(2):135-40. http://doi.org/10.1097/00000421-200304000-00007 PMid:12714883 DOI: https://doi.org/10.1097/01.COC.0000017093.79897.DE

Thompson CB, Jakubowski JA. The pathophysiology and clinical relevance of platelet heterogeneity. Blood. 1988;72(1):1-8. PMid:3291975 DOI: https://doi.org/10.1182/blood.V72.1.1.bloodjournal7211

Kim CH, Kim SJ, Lee MJ, Kwon YE, Kim YL, Park KS, et al. An increase in mean platelet volume from baseline is associated with mortality in patients with severe sepsis or septic shock. PLos One. 2015;10(3):e0119437. http://doi.org/10.1371/journal.pone.0119437 PMid:25742300 DOI: https://doi.org/10.1371/journal.pone.0119437

Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol. 2015;6:98. http://doi.org/10.3389/fimmu.2015.00098 PMid:25798138 DOI: https://doi.org/10.3389/fimmu.2015.00098

Lok J, Leung W, Murphy S, Butler W, Noviski N, Lo EH. Intracranial hemorrhage: Mechanisms of secondary brain injury. Intracerebral Hemorrhage Res. 2011;111:63-9. http://doi.org/10.1007/978-3-7091-0693-8_11 PMid:21725733 DOI: https://doi.org/10.1007/978-3-7091-0693-8_11

Vermi CC, Davila A Jr., Balian S, Sims CA, Diamond SL. Platelet dysfunction during trauma involves diverse signaling pathways and an inhibitory activity in patient-derived plasma. J Trauma Acute Care Surg. 2019;86(2):250-9. http://doi.org/10.1097/TA.0000000000002140 PMid:30531331 DOI: https://doi.org/10.1097/TA.0000000000002140

Castellino FJ, Chapman MP, Donahue DL, Thomas S, Moore EE, Wohlauer MV, et al. Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats. J Trauma Acute Care Surg. 2014;76(5):1169-76. http://doi.org/10.1097/TA.0000000000000216 PMid:24747445 DOI: https://doi.org/10.1097/TA.0000000000000216

Donahue DL, Beck J, Fritz B, Davis P, Sandoval-Cooper MJ, Thomas SG, et al. Early platelet dysfunction in a rodent model of blunt traumatic brain injury reflects the acute traumatic coagulopathy found in humans. J Neurotrauma. 2014;31(4):404-10. http://doi.org/10.1089/neu.2013.3089 PMid:24040968 DOI: https://doi.org/10.1089/neu.2013.3089

Nekludov M, Bellander BM, Blomback M, Wallen HN. Platelet dysfunction in patients with severe traumatic brain injury. J Neurotrauma. 2007;24(11):1699-706. http://doi.org/10.1089/neu.2007.0322 PMid:18001200 DOI: https://doi.org/10.1089/neu.2007.0322

Brohi K, Cohen M, Ganter M, Schultz MJ, Levi M, Mackersie RC, et al. Acute coagulopathy of trauma: Hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64(5):1211-7. http://doi.org/10.1097/TA.0b013e318169cd3c PMid:18469643 DOI: https://doi.org/10.1097/TA.0b013e318169cd3c

Davis PK, Musunuru H, Walsh M, Cassady R, Yount R, Losiniecki A, et al. Platelet dysfunction is an early marker for traumatic brain injury-induced coagulopathy. Neurocrit Care. 2012;18(2):201-8. http://doi.org/10.1007/s12028-012-9745-6 PMid:22847397 DOI: https://doi.org/10.1007/s12028-012-9745-6

Huber-Lang M, Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, et al. Generation of C5a in the absence of C3: A new complement activation pathway. Nat Med. 2006;12(6):682-7. http://doi.org/10.1038/nm1419 PMid:16715088 DOI: https://doi.org/10.1038/nm1419

Ramsey M, Fabian T, Shahan C, Sharpe JP, Mabry SE, Weinberg JA, et al. A prospective study of platelet function in trauma patients. J Trauma Acute Care Surg. 2016;80(5):726-33. http://doi.org/10.1097/TA.0000000000001017 PMid:26895088 DOI: https://doi.org/10.1097/TA.0000000000001017

Scherer RU, Spangenberg P. Procoagulant activity in patients with isolated severe head trauma. Crit Care Med. 1998;26(1):149-56. http://doi.org/10.1097/00003246-199801000-00031 PMid:9428558 DOI: https://doi.org/10.1097/00003246-199801000-00031

Halpern CH, Reilly PM, Turtz AR, Stein SC. Traumatic coagulopathy: The effect of brain injury. J Neurotrauma. 2008;25(8):997-1001. http://doi.org/10.1089/neu.2008.0548 PMid:18687038 DOI: https://doi.org/10.1089/neu.2008.0548

Maegele M. Coagulopathy after traumatic brain injury: Incidence, pathogenesis, and treatment options. Transfusion. 2013;53(Suppl 1):28S-37S. http://doi.org/10.1111/trf.12033 PMid:23301970 DOI: https://doi.org/10.1111/trf.12033

Keimowitz RM, Annis BL. Disseminated intravascular coagulation associated with massive brain injury. J Neurosurg. 1973;39(2):178-80. http://doi.org/10.3171/jns.1973.39.2.0178 PMid:4719695 DOI: https://doi.org/10.3171/jns.1973.39.2.0178

Pathak A, Dutta S, Marwaha N, Singh D, Varma N, Mathuriya SN. Change in tissue thromboplastin content of brain following trauma. Neurol India. 2005;53(2):178-82. http://doi.org/10.4103/0028-3886.16404 PMid:16010055 DOI: https://doi.org/10.4103/0028-3886.16404

Aksu K, Donmez A, Keser G. Inflammation-induced thrombosis: Mechanisms, disease associations and management. Curr Pharm Des. 2012;18(11):1478-93. http://doi.org/10.2174/138161212799504731 PMid:22364132 DOI: https://doi.org/10.2174/138161212799504731

Colkesen Y, Muderrisoglu H. The role of mean platelet volume in predicting thrombotic events. Clin Chem Lab Med. 2012;50(4):631-4. http://doi.org/10.1515/CCLM.2011.806 PMid:22112054 DOI: https://doi.org/10.1515/cclm.2011.806

Lapetina EG, Cuatrecasas P. Rapid inactivation of cyclooxygenase activity after stimulation of intact platelets. Proc natl Acad Sci U S A. 1979;76(1):121-5. http://doi.org/10.1073/pnas.76.1.121 PMid:218191 DOI: https://doi.org/10.1073/pnas.76.1.121

Lippi G, Favaloro EJ, Cervellin G. Massive posttraumatic bleeding: epidemiology, causes, clinical features, and therapeutic management. Semin Thromb Hemost. 2012;39(1):83-93. http://doi.org/10.1055/s-0032-1328936 PMid:23086540 DOI: https://doi.org/10.1055/s-0032-1328936

Lippi G, Cervellin G. Disseminated intravascular coagulation in trauma injuries. Semin Thromb Hemost. 2010;36(4):378-87. http://doi.org/10.1055/s-0030-1254047 PMid:20614390 DOI: https://doi.org/10.1055/s-0030-1254047

Jacoby RC, Owings JT, Holmes J, Battistella FD, Gosselin RC, Paglieroni TG. Platelet activation and function after trauma. J Trauma. 2001;51(4):639-47. http://doi.org/10.1097/00005373-200110000-00003 PMid:11586152 DOI: https://doi.org/10.1097/00005373-200110000-00003

Chen H, Li M, Liu L, Dang X, Zhu D, Tian G. Monocyte/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients with non-ST-elevation myocardial infarction. Medicine. 2019;98(26):e16267. http://doi.org/10.1097/MD.0000000000016267 PMid:31261596 DOI: https://doi.org/10.1097/MD.0000000000016267

Ji H, Li Y, Fan Z, Zuo B, Jian X, Li L, et al. Monocyte/lymphocyte ratio predicts the severity of coronary artery disease: A syntax score assessment. BMC Cardiovasc Dis. 2017;17(1):90. http://doi.org/10.1186/s12872-017-0507-4 PMid:28359298 DOI: https://doi.org/10.1186/s12872-017-0507-4

Jan H, Yang W, Ou C. Combination of the preoperative systemic immune-inflammation index and monocyte-lymphocyte ratio as a novel prognostic factor in patients with upper-tract urothelial carcinoma. Ann Surg Oncol. 2018;26(2):669-84. http://doi.org/10.1245/s10434-018-6942-3 PMid:30374917 DOI: https://doi.org/10.1245/s10434-018-6942-3

Sheng J, Li T, Zhuang D, Cai S, Yang J, Ding F, et al. The monocyte-to-lymphocyte ratio at hospital admission is a novel predictor for acute traumatic intraparenchymal hemorrhage expansion after cerebral contusion. Mediat Inflamm. 2020;2020:5483981. https://doi.org/10.1155/2020/5483981 DOI: https://doi.org/10.1155/2020/5483981

Ding KQ, Lai ZH, Zhang Y, Yang GY, He JR, Zeng LL. Monocyteto-lymphocyte ratio is associated with depression 3 months after stroke. Neuropsychiatr Dis Treat. 2021;17:835-45. http://doi.org/10.2147/NDT.S299462 PMid:33776439 DOI: https://doi.org/10.2147/NDT.S299462

Han J, Park T, Cho S, Joh J, Ahn H. Increased mean platelet volume and mean platelet volume/platelet count ratio in Korean patients with deep vein thrombosis. Platelets. 2012;24(8):590-3. http://doi.org/10.3109/09537104.2012.748187 PMid:23215785 DOI: https://doi.org/10.3109/09537104.2012.748187

Lippi G, Carbucicchio A, Benatti M, Cervellin G. The mean platelet volume is decreased in patients with mild head trauma and brain injury. Blood Coagul Fibrinolysis. 2013;24(7):780-3. http://doi.org/10.1097/MBC.0b013e328361422b PMid:24056292 DOI: https://doi.org/10.1097/MBC.0b013e328361422b

Robbins G, Barnard DL. Mean platelet volume changes in infection. J Clin Pathol. 1983;36(11):1320. http://doi.org/10.1136/jcp.36.11.1320-a PMid:6630582 DOI: https://doi.org/10.1136/jcp.36.11.1320-a

Kapsoritakis A, Koukourakis M, Sfiridaki A, Potamianos SP, Kosmadaki MG, Koutroubakis IE, et al. Mean platelet volume: A useful marker of inflammatory bowel disease activity. Am J Gastroenterol. 2001;96(3):776-81. http://doi.org/10.1111/j.1572-0241.2001.03621.x PMid:11280550 DOI: https://doi.org/10.1111/j.1572-0241.2001.03621.x

Tuncel T, Uysal P, Hocaoglu A, Erge DO, Karaman O, Uzuner N. Change of mean platelet volume values in asthmatic children as an inflammatory marker. Allergol Immunopathol. 2012;40(2):104-107. http://doi.org/10.1016/j.aller.2011.03.007 PMid:21621316 DOI: https://doi.org/10.1016/j.aller.2011.03.007

Ulasli S, Ozyurek B, Yilmaz E, Ulubay G. Mean platelet volume as an inflammatory marker in acute exacerbation of chronic obstructive pulmonary disease. Polish Arch Int Med. 2012;122(6):284-90. http://doi.org/10.20452/pamw.1284 PMid:22576316 DOI: https://doi.org/10.20452/pamw.1284

Thompson CB, Jakubowski JA, Quinn PG, Deykin D, Valeri CR. Platelet size and age determine platelet function independently. Blood. 1984;63(6):1372-5. PMid:6722354 DOI: https://doi.org/10.1182/blood.V63.6.1372.bloodjournal6361372

Cho S, Yang J, You E, Kim BH, Shim J, Lee HJ, et al. Mean platelet volume/platelet count ratio in hepatocellular carcinoma. Platelets. 2012;24(5):375-7. http://doi.org/10.3109/09537104.2012.701028 PMid:22835043 DOI: https://doi.org/10.3109/09537104.2012.701028

Schnüriger B, Inaba K, Abdelsayed G, Lustenberger T, Eberle BM, Barmparas G, et al. The impact of platelets on the progression of traumatic intracranial hemorrhage. J Trauma Injury Infect Crit Care. 2010;68(4):881-5. http://doi.org/10.1097/TA.0b013e3181d3cc58 PMid:20386283 DOI: https://doi.org/10.1097/TA.0b013e3181d3cc58

Carrick MM, Tyroch AH, Youens CA, Handley T. Subsequent development of thrombocytopenia and coagulopathy in moderate and severe head injury: Support for serial laboratory examination. J Trauma. 2005;58(4):725-30. http://doi.org/10.1097/01.ta.0000159249.68363.78 PMid:15824648 DOI: https://doi.org/10.1097/01.TA.0000159249.68363.78

Cortiana M, Zagara G, Fava S, Seveso M. Coagulation abnormalities in patients with head injury. J Neurosurg. 1986;30(3):133-8. PMid:3783267

Auer L. Disturbances of the coagulatory system in patients with severe cerebral trauma. Acta Neurochir. 1978;43(1-2):51-9. http://doi.org/10.1007/BF01809225 PMid:707171 DOI: https://doi.org/10.1007/BF01809225

Ray B, Tinsley L, Ford L, Thompson DM, Sidorov EV, Bohnstedt BN. Trends of platelet volume index predicts delayed cerebral ischemia after subarachnoid hemorrhage. World Neurosurg. 2018;111:e624-31. http://doi.org/10.1016/j.wneu.2017.12.131 PMid:29292187 DOI: https://doi.org/10.1016/j.wneu.2017.12.131

Ayinbuomwan W, Idogun E, Iribhogbe P. High sensitivity C-reactive protein in patients with acute injuries. IOSR J Defense Model Simul. 2015;14(6):94-8. http://doi.org/10.1016/j.ahj.2019.06.019 PMid:31382219 DOI: https://doi.org/10.1016/j.ahj.2019.06.019

Wolbink GJ, Brouwer MC, Buysmann S, Ten Berge IJ, Hack CE. CRP-mediated activation of complement in vivo: Assessment by measuring circulating complement-C-reactive protein complexes. J Immunol. 1996;157(1):473-9. PMid:8683153

Hicks PS, Saunero-Nava L, Du Clos TW, Mold C. Serum amyloid P component binds to histones and activates the classical complement pathway. J Immunol. 1992;149(11):3689-94. PMid:1431140

Gabay C, Kushner I. Acute-phase proteins and other systematic responses to inflammation. N Engl J Med. 1999;340(6):448-54. http://doi.org/10.1056/NEJM199902113400607 PMid:9971870 DOI: https://doi.org/10.1056/NEJM199902113400607

Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure. 1999;7(2):169-77. http://doi.org/10.1016/S0969-2126(99)80023-9 PMid:10368284 DOI: https://doi.org/10.1016/S0969-2126(99)80023-9

Di Napoli M, Parry-Jones AR, Smith CJ, Hopkins SJ, Slevin M, Masotti L, et al. C-reactive protein predicts hematoma growth in intracerebral hemorrhage. Stroke. 2014;45(1):59-65. http://doi.org/10.1161/STROKEAHA.113.001721 PMid:24262327 DOI: https://doi.org/10.1161/STROKEAHA.113.001721

Ridker PM. From CRP to IL-6 to IL-1: Moving upstream to identify novel targets for atheroprotection. Circ Res. 2016;118(1):145-56. http://doi.org/10.1161/CIRCRESAHA.115.306656 PMid:26837745 DOI: https://doi.org/10.1161/CIRCRESAHA.115.306656

Vermiere S, Van Assche G, Rutgeerts P. The role of c-reactive protein as an inflammatory marker in gastrointestinal diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2(12):580-6. http://doi.org/10.1038/ncpgasthep0359 PMid:16327837 DOI: https://doi.org/10.1038/ncpgasthep0359

Bomba GI, Maliawan S, Mahadewa TG. High serum C-reactive protein as predictor of systemic inflammatory response syndrome in severe head injury patients. Bali Med J. 2013;2(1):38-41.

Xu LB, Yue JK, Korley F, Puccio AM, Yuh EL, Sun X, et al. Highsensitivity C-reactive protein is a prognostic biomarker of six month disability after traumatic brain injury: Results from the TRACK-TBI study. J Neurotrauma. 2021;38(7):918-27. http://doi.org/10.1089/neu.2020.7177 PMid:33161875 DOI: https://doi.org/10.1089/neu.2020.7177

Su S, Xu W, Li M, Zhang L, Wu YF, Yu F, et al. Elevated C-reactive protein levels may be a predictor of persistent unfavourable symptoms in patients with mild traumatic brain injury: A preliminary study. Brain Behav Immunity. 2014;98(1):111-7. http://doi.org/10.1016/j.bbi.2014.01.009 PMid:24456846 DOI: https://doi.org/10.1016/j.bbi.2014.01.009

Carabias CS, Gomez PA, Panero I, Eiriz C, Castano-Leon AM, Egea J, et al. Chitinase-3-like protein 1, serum amyloid A1, c-reactive protein, and procalcitonin are promising biomarkers for intracranial severity assessment of traumatic brain injury: Relationship with Glasgow coma scale and computed tomography volumetry. World Neurosurg. 2020;134:e120-43. http://doi.org/10.1016/j.wneu.2019.09.143 PMid:31606503 DOI: https://doi.org/10.1016/j.wneu.2019.09.143

Anada RP, Wong KT, Jayapalan JJ, Hashim OH, Ganesan D. Panel of serum protein biomarkers to grade the severity of traumatic brain injury. Electrophoresis. 2018;39(18):2308-15. http://doi.org/10.1002/elps.201700407 PMid:29570807 DOI: https://doi.org/10.1002/elps.201700407

Sogut O, Guloglu C, Orak M, Sayhan MB, Gokdemir MT, Ustundag M, et al. Trauma scores and neuron-specific enolase, cytokine and c-reactive protein levels as preditors of mortality in patients with blunt head trauma. J Int Med Res. 2010;38(5):1708-20. http://doi.org/10.1177/147323001003800516 PMid:21309485 DOI: https://doi.org/10.1177/147323001003800516

Fountas KN, Tasiou A, Kapsalaki EZ, Paterakis KN, Grigorian AA, Lee GP, et al. Serum and cerebrospinal fluid C-reactive protein levels as predictors of vasospasm in aneurysmal subarachnoid hemorrhage. Neurosurg Focus. 2009;26(5):E22. http://doi.org/10.3171/2009.2.FOCUS08311 PMid:19409001 DOI: https://doi.org/10.3171/2009.2.FOCUS08311

Rothoerl RD, Axmann C, Pina AL, Woertgen C, Brawanski A. Possible role of the c-reactive protein and white blood cell count in the pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2006;18(1):68-72. http://doi.org/10.1097/01.ana.0000181693.30750.af PMid:16369143 DOI: https://doi.org/10.1097/01.ana.0000181693.30750.af

Bray C, Bell LN, Liang H, Haykal R, Kaiksow F, Mazza JJ, et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ. 2016;115(6):317-21. PMid:29094869

Lapić I, Padoan A, Bozzato D, Plebani M. Erythrocyte sedimentation rate and c-reactive protein in acute inflammation. Am J Clin Pathol. 2019;153(1):14-29. http://doi.org/10.1093/ajcp/aqz142 PMid:31598629 DOI: https://doi.org/10.1093/ajcp/aqz142

Alende-Castro V, Alonso-Sampedro M, Vazquez-Temprano N, Tunez C, Rey D, Garcia-Iglesias C, et al. Factors influencing erythrocyte sedimentation rate in adults. Medicine. 2019;98(34):e16816. http://doi.org/10.1097/MD.0000000000016816 PMid:31441853 DOI: https://doi.org/10.1097/MD.0000000000016816

Zaremba J, Skrobanski P, Losy J. Acute ischaemic stroke increases the erythrocyte sedimentation rate, which correlates with early brain damage. Folia Morphol (Warsz). 2004;63(4):373-6. PMid:15712129

Downloads

Published

2021-10-06

How to Cite

1.
Natakusuma TISD, Mahadewa TGB, Mardhika PE, Maliawan S, Senapathi TGA, Ryalino C. Role of Monocyte-to-lymphocyte Ratio, Mean Platelet Volume-to-Platelet Count Ratio, C-Reactive Protein and Erythrocyte Sedimentation Rate as Predictor of Severity in Secondary Traumatic Brain Injury: A Literature Review. Open Access Maced J Med Sci [Internet]. 2021 Oct. 6 [cited 2024 Nov. 23];9(F):574-83. Available from: https://oamjms.eu/index.php/mjms/article/view/6985

Issue

Section

Narrative Review Article

Categories