Protective Effect of Eugenol against Acetaminophen-Induced Hepatotoxicity in Human Hepatocellular Carcinoma Cells via Antioxidant, Anti-Inflammatory, and Anti-Necrotic Potency
DOI:
https://doi.org/10.3889/oamjms.2021.7003Keywords:
Acetaminophen, Eugenol, Human hepatocellular carcinoma cells, Hepatotoxicity, HepatoprotectiveAbstract
BACKGROUND: Overdoses acetaminophen (APAP) could cause acute liver failure, even though it used is for analgesics. APAP could cause hepatotoxicity due to multiple mediators of inflammation and oxidative stress. Eugenol has been reported to have anti-inflammatory and antioxidant activity but its hepatoprotective effect has not been widely reported.
AIM: The purpose of this research is to know if eugenol could protect HepG2 cells from APAP.
METHODS: HepG2 that induced by APAP as hepatotoxicity cells model was treated by using eugenol at 6.25 and 25 μg/mL. The protective effects of eugenol toward hepatotoxicity were evaluated by determine tumor necrosis factor-α (TNF-α) concentration, apoptotic activity, reactive oxygen species (ROS) level, also cytochrome (CYP)2E1 and GPX gene expression.
RESULTS: Eugenol at 6.25 and 25 μg/mL concentration can reduce TNF-α concentration, the apoptotic, necrotic, dead cells, and ROS level. Besides it can increase the gene expression (GPX and CYP2E1). The best hepatoprotective effect was found when using the eugenol at 25 μg/mL.
CONCLUSION: Therefore, eugenol can be used to protect HepG2 cells against APAP.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Antoine DJ, Williams DP, Kipar A, Laverty H, Park BK. Diet restriction inhibits apoptosis and HMGB1 oxidation and promotes inflammatory cell recruitment during acetaminophen hepatotoxicity. Mol Med. 2010;16(11-12):479-90. https://doi.org/10.2119/molmed.2010.00126 PMid:20811657 DOI: https://doi.org/10.2119/molmed.2010.00126
Barman PK, Mukherjee R, Prusty BK, Suklabaidya S, Senapati S, Ravindran B. Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice. Cell Death Dis. 2016;7(5):e2224. https://doi.org/10.1038/cddis.2016.131 PMid:27171266 DOI: https://doi.org/10.1038/cddis.2016.131
Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, et al. Acetaminophen‐induced acute liver failure: Results of a United States multicenter, prospective study. Hepatology. 2005;42(6):1364-72. https://doi.org/10.1002/hep.20948 PMid:16317692 DOI: https://doi.org/10.1002/hep.20948
Uzkeser M. Protective effect of Panax ginseng against N-acetyl-p-aminophenol-induced hepatotoxicity in rats. Afr J Pharm Pharm. 2012;6:2634-42. DOI: https://doi.org/10.5897/AJPP12.658
Dragomir AC, Sun R, Mishin V, Hall LB, Laskin JD, Laskin DL. Role of galectin-3 in acetaminophen-induced hepatotoxicity and inflammatory mediator production. Toxicol Sci. 2012;127(2):609-19. https://doi.org/10.1093/toxsci/kfs117 PMid:22461450 DOI: https://doi.org/10.1093/toxsci/kfs117
Jaeschke H, Williams CD, Ramachandran A, Bajt ML. Acetaminophen hepatotoxicity and repair: The role of sterile inflammation and innate immunity. Liver Int. 2012;32(1):8-20. https://doi.org/10.1111/j.1478-3231.2011.02501.x. PMid:21745276 DOI: https://doi.org/10.1111/j.1478-3231.2011.02501.x
Zhang Y, Zhang F, Wang K, Liu G, Yang M, Luan Y, et al. Protective effect of allyl methyl disulfide on acetaminophen-induced hepatotoxicity in mice. Chem Biol Interact. 2016;249:71-7. https://doi.org/10.1016/j.cbi.2016.03.008 PMid:26969520 DOI: https://doi.org/10.1016/j.cbi.2016.03.008
Wang S, Wang X, Luo F, Tang X, Li K, Hu X, et al. Panaxatriol saponin ameliorated liver injury by acetaminophen via restoring thioredoxin-1 and pro-caspase-12. Liver Int. 2014;34(7):1068-73. https://doi.org/10.1111/liv.12329 PMid:24119161 DOI: https://doi.org/10.1111/liv.12329
Lister INE, Ginting CN, Girsang E, Armansyah A, Marpaung HH, Sinaga AP, et al. Antioxidant properties of red betel (Piper crocatum) leaf extract and its compounds. J Nat Remed. 2019;19:198-205. DOI: https://doi.org/10.18311/jnr/2019/23633
Shi CX, Lin YX, Liu FP, Chang YC, Li R, Li CW, et al. Hepatoprotective effects of ethanol extracts from Folium Syringae against acetaminophen-induced hepatotoxicity in vitro and in vivo. J Chin Med Assoc. 2017;80(10):623-9. https://doi.org/10.1016/j.jcma.2017.03.007 PMid:28690122 DOI: https://doi.org/10.1016/j.jcma.2017.03.007
Lister INE, Ginting CN, Girsang E, Amansyah A, Chiuman L, Yanti NL, et al. Hepatoprotective effect of eugenol on acetaminophen-induced hepatotoxicity in HepG2 cells. Int J Phys Conf Ser. 2019;1374:1-7. DOI: https://doi.org/10.1088/1742-6596/1374/1/012009
Luo R, Wang Y, Xu P, Cao G, Zhao Y, Shao X, et al. Hypoxia-inducible miR-210 contributes to preeclampsia via targeting thrombospondin Type I domain containing 7A. Sci Rep. 2016;6:19588-99. DOI: https://doi.org/10.1038/srep19588
Aouache R, Biquard L, Vaiman D, Miralles F. Oxidative stress in preeclampsia and placental diseases. Int J Mol Sci. 2018;19(5):1496. https://doi.org/10.3390/ijms19051496 PMid:29772777 DOI: https://doi.org/10.3390/ijms19051496
Widowati W, Wijaya L, Bachtiar I, Gunanegara RF, Sugeng SU, Irawan YA, et al. Effect of oxygen tension on proliferation and characteristics of Wharton’s jelly-derived mesenchymal stem cells. Biomark Genom Med. 2014;6(1):43-8. https://doi.org/10.1016/j.bgm.2014.02.001 DOI: https://doi.org/10.1016/j.bgm.2014.02.001
Widowati W, Wijaya L, Murti H, Widyastuti H, Agustina D, Laksmitawati DR, et al. Conditioned medium from normoxia (WJMSCs-norCM) and hypoxia-treated WJMSCs (WJMSCs-hypoCM) in inhibiting cancer cell proliferation. Biomark Genom Med. 2015;7(1):8-17. https://doi.org/10.1016/j.bgm.2014.08.008 DOI: https://doi.org/10.1016/j.bgm.2014.08.008
Widowati W, Widyastuti H, Murti H, Laksmitawati DR, Maesaroh M, Sumitro SB, et al. Interleukins and VEGF secretome of human Wharton’s jelly mesenchymal stem cells-conditioned medium (hWJMSCs-CM) in different passages and oxygen tensions. Biosci Res. 2017;14:776-87. DOI: https://doi.org/10.1016/j.bgm.2016.02.001
Pluemsamran T, Onkoksoong T, Panich U. Caffeic acid and ferulic acid inhibit UVA‐induced matrix metalloproteinase‐1 through regulation of antioxidant defense system in keratinocyte HaCaT cells. Photochem Photobiol. 2012;88(4):961-8. https://doi.org/10.1111/j.1751-1097.2012.01118.x PMid:22360712 DOI: https://doi.org/10.1111/j.1751-1097.2012.01118.x
Widowati W, Prahastuti S, Ekayanti NL, Munshy UZ, Kusuma HS, Wibowo S, et al. Anti-inflammation assay of black soybean extract and its compounds on lipopolysaccharide-induced RAW 264.7 cell. J Phys Conf Ser. 2019;1374:012052. DOI: https://doi.org/10.1088/1742-6596/1374/1/012052
Widowati W, Murti H, Jasaputra DK, Sumitro SB, Widodo MA, Fauziah N, et al. Selective cytotoxic potential of IFN-ɣ and TNF-α on breast cancer cell lines (T47D and MCF7). Asian J Cell Biol. 2016;11(1):1-12. DOI: https://doi.org/10.3923/ajcb.2016.1.12
Widowati W, Jasaputra DK, Sumitro SB, Widodo MA, Afifah E, Rizal R, et al. Direct and indirect effect of TNFα and IFNγ toward apoptosis in breast cancer cells. Mol Cell Biomed Sci. 2018;2(2):60-9. DOI: https://doi.org/10.21705/mcbs.v2i2.21
Widowati W, Afifah E, Mozef T, Sandra F, Rizal R, Amalia A, et al. Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward Chondrogeznesis in an osteoarthritis model. Iran J Basic Med Sci. 2018;21:745-52. https://doi.org/10.22038/IJBMS.2018.28205.6840 PMid:30140415
Afifah E, Mozef T, Sandra F, Arumwardana S, Rihibiha DD, Nufus H, et al. Induction of matrix metalloproteinases in chondrocytes by Interleukin IL-1β as an osteoarthritis model. J Math Fundam Sci. 2019;51(2):103-11. https://doi.org/10.5614/j.math.fund. sci.2019.51.2.1 DOI: https://doi.org/10.5614/j.math.fund.sci.2019.51.2.1
Hidayat M, Prahastuti S, Fauziah N, Maesaroh M, Balqis B, Widowati W. Modulation of adipogenesis-related gene expression by ethanol extracts of Detam 1 soybean and Jati Belanda leaf in 3T3-L1 cells. Bangladesh J Pharmacol. 2016;11(3):697-702. DOI: https://doi.org/10.3329/bjp.v11i3.26471
Kim J, Kim Y, Choi J, Jung H, Lee K, Kang J, et al. Recapitulation of methotrexate hepatotoxicity with induced pluripotent stem cell-derived hepatocytes from patients with rheumatoid arthritis. Stem Cell Res Ther. 2018;9(1):357. https://doi.org/10.1186/s13287-018-1100-1 PMid:30594247 DOI: https://doi.org/10.1186/s13287-018-1100-1
Ugusman A, Zakaria Z, Hui CK, Nordin NA. Piper sarmentosum inhibits ICAM-1 and Nox4 gene expression in oxidative stress-induced human umbilical vein endothelial cells. BMC Complement Altern Med. 2011;11:31. https://doi.org/10.1186/1472-6882-11-31 PMid:21496279 DOI: https://doi.org/10.1186/1472-6882-11-31
Hu JN, Xu XY, Li W, Wang YM, Liu Y, Wang Z, et al. Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis. J Ginseng Res. 2019;43(1):10-9. https://doi.org/10.1016/j.jgr.2017.07.003 PMid:30662289 DOI: https://doi.org/10.1016/j.jgr.2017.07.003
Ramachandran A, Jaeschke H. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J Clin Transl Res. 2017;3 Suppl 1:157-69. https://doi.org/10.18053/jctres.03.2017S1.002 PMid:28670625 DOI: https://doi.org/10.18053/jctres.03.2017S1.002
Barboza JN, da Silva Maia Bezerra Filho C, Silva RO, Medeiros JVR, de Sousa DP. An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxid Med Cell Longev. 2018;2018:3957262. https://doi.org/10.1155/2018/3957262 PMid:30425782 DOI: https://doi.org/10.1155/2018/3957262
Kim SS, Oh OJ, Min HY, Park EJ, Kim Y, Park HJ, et al. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264. 7 cells. Life Sci. 2003;73(3):337-48. https://doi.org/10.1016/ s0024-3205(03)00288-1 PMid:12757841 DOI: https://doi.org/10.1016/S0024-3205(03)00288-1
Hamed SF, Sadek Z, Edris A. Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion. J Oleo Sci. 2012;61(11):641-8. https://doi.org/10.5650/jos.61.641 PMid:23138253 DOI: https://doi.org/10.5650/jos.61.641
Dervis E, Yurt Kilcar A, Medine EI, Tekin V, Cetkin B, Uygur E, et al. In vitro incorporation of radioiodinated eugenol on adenocarcinoma cell lines (Caco2, MCF7, and PC3). Cancer Biother Radiopharm. 2017;32(3):75-81. https://doi.org/10.1089/cbr.2017.2181 PMid:28358602 DOI: https://doi.org/10.1089/cbr.2017.2181
Saravi SSS, Hasanvand A, Shahkarami K, Dehpour AR. The protective potential of metformin against acetaminophen-induced hepatotoxicity in BALB/C mice. Pharm Biol. 2016;54(12):2830-37. https://doi.org/10.1080/13880209.2016.1185633 PMid:27252117 DOI: https://doi.org/10.1080/13880209.2016.1185633
Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 2015;16(11):26087-24. https://doi.org/10.3390/ijms161125942 PMid:26540040 DOI: https://doi.org/10.3390/ijms161125942
Coffin CS, Fraser HF, Panaccione R, Ghosh S. Liver diseases associated with anti-tumor necrosis factor-alpha (TNF-α) use for inflammatory bowel disease. Inflamm Bowel Dis. 2011;17(1):479-84. https://doi.org/10.1002/ibd.21336 PMid:20848520 DOI: https://doi.org/10.1002/ibd.21336
Feagins LA, Flores A, Arriens C, Park C, Crook T, Reimold A, et al. Nonalcoholic fatty liver disease: A potential consequence of tumor necrosis factor-inhibitor therapy. Eur J Gastroenterol Hepatol. 2015;27(10):1154-60. https://doi.org/10.1097/MEG.0000000000000421 PMid:26148245 DOI: https://doi.org/10.1097/MEG.0000000000000421
Frazier TH, Stocker AM, Kershner NA, Marsano LS, McClain CJ. Treatment of alcoholic liver disease. Therap Adv Gastroenterol. 2011;4(1):63-81. https://doi.org/10.1177/1756283X10378925 PMid:21317995 DOI: https://doi.org/10.1177/1756283X10378925
Yuan J, Ge K, Mu J, Rong J, Zhang L, Wang B, et al. Ferulic acid attenuated acetaminophen-induced hepatotoxicity though down-regulating the cytochrome P 2E1 and inhibiting toll-like receptor 4 signaling-mediated inflammation in mice. Am J Transl Res. 2016;8(10):4205-14. PMid:27830004
Yogalakshmi B, Viswanathan P, Anuradha CV. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology. 2010;268(3):204-12. https://doi.org/10.1016/j.tox.2009.12.018 PMid:20036707 DOI: https://doi.org/10.1016/j.tox.2009.12.018
Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. Activation of autophagy protects against acetaminophen‐induced hepatotoxicity. Hepatology. 2012;55(1):222-32. https://doi.org/10.1002/hep.24690 PMid:21932416 DOI: https://doi.org/10.1002/hep.24690
Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci. 2006;89(1):31-41. https://doi.org/10.1093/toxsci/kfi336 PMid:16177235 DOI: https://doi.org/10.1093/toxsci/kfi336
Du K, Ramachandran A, Jaeschke H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol. 2016;10:148-56. https://doi.org/10.1016/j.redox.2016.10.001 PMid:27744120 DOI: https://doi.org/10.1016/j.redox.2016.10.001
Parikh H, Pandita N, Khanna A. Phytoextract of Indian mustard seeds acts by suppressing the generation of ROS against acetaminophen-induced hepatotoxicity in HepG2 cells. Pharm Biol. 2015;53(7):975-84. https://doi.org/10.3109/13880209.2014.950675 PMid:25489640 DOI: https://doi.org/10.3109/13880209.2014.950675
Gonzalez FJ. The 2006 Bernard B. Brodie award lecture. Cyp2e1. Drug Metab Dispos. 2007;35(1):1-8. https://doi.org/10.1124/dmd.106.012492 PMid:17020953 DOI: https://doi.org/10.1124/dmd.106.012492
Lee HC, Wei YH. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood). 2007;232(5):592-606. PMid:17463155
Hou C, Luo Q, Liu J, Miao L, Zhang C, Gao Y, et al. Construction of GPx active centers on natural protein nanodisk/ nanotube: A new way to develop artificial nanoenzyme. ACS Nano. 2012;6(10):8692-701. https://doi.org/10.1021/nn302270b PMid:22992167 DOI: https://doi.org/10.1021/nn302270b
Zhao H, Jiang Z, Chang X, Xue H, Yahefu W, Zhang X. 4-Hydroxyphenylacetic acid prevents acute APAP-induced liver injury by increasing Phase II and antioxidant enzymes in mice. Front Pharmacol. 2018;9:653. https://doi.org/10.3389/fphar.2018.00653 PMid:2997388 DOI: https://doi.org/10.3389/fphar.2018.00653
Downloads
Published
How to Cite
License
Copyright (c) 2021 Florenly Florenly, Liena Sugianto, I Nyoman Ehrich Lister, Ermi Girsang, Chrismis Novalinda Ginting, Ervi Afifah, Hanna Kusuma, Rizal Rizal, Wahyu Widowati (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0