Malaria at Forest Areas in South Kalimantan, Indonesia: Risk Factors and Strategies for Elimination

Authors

  • Istiana Istiana Doctoral Student of Medicine https://orcid.org/0000-0002-6085-1339
  • Usman Hadi Department of Internal Medicine
  • Yoes Prijatna Dachlan Department of Parasitology
  • Heny Arwati Department of Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.7012

Keywords:

Malaria, Forest areas, Risk factors

Abstract

BACKGROUND: South Kalimantan is one of province in Indonesia which has endemic area, mainly in the villages at forest area. Understanding the risk factors which can increase the risk of malaria in individuals at forest area will enable more effective use for controlling the disease. The identification of risk factors will provide information about local malaria epidemiology and usefull for making appropriate and effective malaria eradication program policies in this area.

AIM: To know the risk factors of malaria prevalence in endemic forest areas in South Kalimantan, Indonesia.

METHODS: This cross-sectional study was conducted on 107 adult people who lived in Batu Bulan Village and Batu Paha Village, South Kalimantan. Blood samples for malaria microscopy and rapid diagnostic test is taken from cubital vein. Household factors and demographic data were obtained. Chi-square and logistic regression were performed to analyze the factors associated with malaria prevalence in South Kalimantan. This research didn’t do vector survey, only on the prevalence of malaria and risk factor in human and environment.

RESULTS: The prevalence of malaria based RDT examination was 35.5% with 23.68% Plasmodium falciparum, 21.05% Plasmodium vivax, and 55.27% mixed infection. The prevalence malaria based on microscopic examination was 17.75% with 47.36% P. falciparum, 26.32% P. vivax, and 26.32% mix infection. Demographic factors influencing the prevalence of malaria were aged below 25-years-old (p = 0.01, 95% CI, OR = 2.289), villages in Batu Paha (p = 0.048, 95% CI, OR = 3.55), and occupation as a forest worker (p = 0.022, 95% CI, OR = 6.38). House factors that influence the prevalence of malaria were the condition of the walls that are open or not tight (p = 0.048 95% CI, OR = 5.205), the roof is made of plastic (p = 0.015 95% CI, OR = 2.831), and the presence of animal cage around the house (p = 0.015 95% CI, OR = 6.292).

CONCLUSIONS: Malaria incidence remains occurs with high prevalence in the pupolation in remote forest areas.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. World Malaria Report 2020. Geneva: World Health Organization; 2020. Available from: https://www.who.int/publications/i/item/9789240015791. [Last accessed on 2021 Jun 26].

Sandfort M, Vantaux A, Kim S, Obadia T, Pepey A, Gardais S, et al. Forest malaria in Cambodia: The occupational and spatial clustering of Plasmodium vivax and Plasmodium falciparum infection risk in a cross-sectional survey in Mondulkiri province, Cambodia. Malar J. 2020;19(1):1-12. https://doi.org/10.1186/s12936-020-03482-4 DOI: https://doi.org/10.1186/s12936-020-03482-4

Dhiman S. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infect Dis Poverty. 2019;8(1):14. https://doi.org/10.1186/s40249-019-0527-7 PMid:30760324 DOI: https://doi.org/10.1186/s40249-019-0524-x

Ministry of Health of the Republic of Indonesia. Basic Health Research 2018. Jakarta: Ministry of Health of the Republic of Indonesia; 2018. https://doi.org/10.25133/jpssv27n1.003 DOI: https://doi.org/10.25133/JPSSv27n1.003

Kar NP, Kumar A, Singh OP, Carlton JM, Nanda N. A review of malaria transmission dynamics in forest ecosystems. Parasit Vectors. 2014;7:265. https://doi.org/10.1186/1756-3305-7-265 PMid:24912923 DOI: https://doi.org/10.1186/1756-3305-7-265

Thanh PV, van Hong N, van Van N, van Malderen C, Obsomer V, Rosanas-Urgell A, et al. Epidemiology of forest malaria in Central Vietnam: The hidden parasite reservoir. Malar J. 2015;14:86. https://doi.org/10.1186/s12936-015-0601-y PMid:25880664 DOI: https://doi.org/10.1186/s12936-015-0601-y

Sanann N, Peto TJ, Tripura R, Callery JJ, Nguon C, Bui TM, et al. Forest work and its implications for malaria elimination: A qualitative study. Malar J. 2019;18(1):376. PMid:31771587 DOI: https://doi.org/10.1186/s12936-019-3008-3

Abiodun GJ, Maharaj R, Witbooi P, Okosun KO. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar J. 2016;15:364. PMid:27421769 DOI: https://doi.org/10.1186/s12936-016-1411-6

Fornace KM, Diaz AV, Lines J, Drakeley CJ. Achieving global malaria eradication in changing landscapes. Malar J. 2021;20(1):69. PMid:33530995 DOI: https://doi.org/10.1186/s12936-021-03599-0

Kunkel A, Nguon C, Iv S, Chhim S, Peov D, Kong P, Kim S, et al. Choosing interventions to eliminate forest malaria: Preliminary results of two operational research studies inside Cambodian forests. Malar J. 2021;20(1):51. PMid:33472630 DOI: https://doi.org/10.1186/s12936-020-03572-3

Bauhoff S, Busch J. Does deforestation increase malaria prevalence? Evidence from satellite data and health surveys. World Dev. 2020;127:104734. DOI: https://doi.org/10.1016/j.worlddev.2019.104734

Lindblade KA, Walker ED, Onapa AW, Katungu J, Wilson ML. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda.Trop Med Int Health. 2000;5(4):263-74. PMid:10810021 DOI: https://doi.org/10.1046/j.1365-3156.2000.00551.x

Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000;30(12-13):1395-405. PMid:11113264 DOI: https://doi.org/10.1016/S0020-7519(00)00141-7

Afrane YA, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in Western Kenya Highlands. J Med Entomol. 2005;42(6):974-80. https://doi.org/10.1093/jmedent/42.6.974 PMid:16465737 DOI: https://doi.org/10.1093/jmedent/42.6.974

Munga S, Minakawa N, Zhou G, Mushinzimana E, Barrack OO, Githeko AK, et al. Association between land cover and habitat productivity of malaria vectors in Western Kenyan Highlands. Am J Trop Med Hyg. 2006;74(1):69-75. https://doi.org/10.4269/ajtmh.2006.74.69 PMid:16407348 DOI: https://doi.org/10.4269/ajtmh.2006.74.69

Zhong D, Wang X, Xu T, Zhou G, Wang Y, Lee MC, et al. Effects of microclimate condition changes due to land use and land cover changes on the survivorship of malaria vectors in China-Myanmar Border region. PLoS One. 2016;11(5):e0155301. https://doi.org/10.1371/journal.pone.0155301 PMid:27171475 DOI: https://doi.org/10.1371/journal.pone.0155301

Petney TN. Environmental, cultural and social changes and their influence on parasite infections. Int J Parasitol. 2001;31(9):919-32. PMid:11406141 DOI: https://doi.org/10.1016/S0020-7519(01)00196-5

Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS, et al. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg. 2006;74(1):3-11. https://doi.org/10.4269/ajtmh.2006.74.3 PMid:16407338 DOI: https://doi.org/10.4269/ajtmh.2006.74.3

Schlabe S, Reiter-Owona I, Nordmann T, Dolscheid-Pommerich R, Tannich E, Hoerauf A, et al. Rapid diagnostic test negative Plasmodium falciparum malaria in a traveller returning from Ethiopia. Malar J. 2021;20(1):145. https://doi.org/10.1186/s12936-021-03678-2 PMid:33712017 DOI: https://doi.org/10.1186/s12936-021-03678-2

World Health Organization. Malaria Rapid Diagnostic Test Performance: Results of WHO Product Testing of Malaria RDTs: Round 8 (2016-2018). Geneva: World Health Organization; 2018. https://doi.org/10.2471/tdr.09.978-924-1598071 DOI: https://doi.org/10.2471/TDR.09.978-924-1598071

World Health Organization. Malaria Microscopy, Quality Assurance Manual. Version 2. Geneva: World Health Organization; 2016.

Berzosa P, de Lucio A, Romay-Barja M, Herrador Z, González V, García L, et al. Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malar J. 2018;17(1):333. https://doi.org/10.1186/s12936-018-2481-4 PMid:30223852 DOI: https://doi.org/10.1186/s12936-018-2481-4

Tanah Bumbu Regency Government. General Data of Kusan Hulu District. Indonesia: Tanah Bumbu Regency Government; 2020. Available from: http://www.kusanhulu.tanahbumbukab.go.id/?page_id=19 [Last accesed on 2021 Jan 04]. https://doi.org/10.17501/24246735.2018.4105 DOI: https://doi.org/10.17501/24246735.2018.4105

Murhandarwati EE, Fuad A, Sulistyawati S, Wijayanti MA, Bia MB, Widartono BS, et al. Change of strategy is required for malaria elimination: A case study in Purworejo District, Central Java Province, Indonesia. Malar J. 2015;14:318. https://doi.org/10.1186/s12936-015-0828-7 DOI: https://doi.org/10.1186/s12936-015-0828-7

Raman J, Gast L, Balawanth R, Tessema S, Brooke B, Maharaj R, et al. High levels of imported asymptomatic malaria but limited local transmission in KwaZulu-Natal, a South African malaria-endemic province nearing malaria elimination. Malar J. 2020;19:152. https://doi.org/10.1186/s12936-020-03227-3 DOI: https://doi.org/10.1186/s12936-020-03227-3

Mosha JF, Lukole E, Charlwood JD, Wright A, Rowland M, Bullock O, et al. Risk factors for malaria infection prevalence and household vector density between mass distribution campaigns of long-lasting insecticidal nets in North-Western Tanzania. Malar J. 2020;19:297. https://doi.org/10.1186/s12936-020-03369-4 DOI: https://doi.org/10.1186/s12936-020-03369-4

Chipoya MN, Shimaponda-Mataa NM. Prevalence, characteristics and risk factors of imported and local malaria cases in North-Western Province, Zambia: A cross-sectional study. Malar J. 2020;19(1):430. https://doi.org/10.1186/s12936-020-03504-1 PMid:33228684 DOI: https://doi.org/10.1186/s12936-020-03504-1

Achidi EA, Apinjoh TO, Anchang-Kimbi JK, Mugri RN, Ngwai AN, Yafi CN. Severe and uncomplicated falciparum malaria in children from three regions and three ethnic groups in Cameroon: Prospective study. Malar J. 2012;11:215. https://doi.org/10.1186/1475-2875-11-215 PMid:22727184 DOI: https://doi.org/10.1186/1475-2875-11-215

Alam MS, Kabir MM, Hossain MS, Naher S, Ferdous NE, Khan WA, et al. Reduction in malaria prevalence and increase in malaria awareness in endemic districts of Bangladesh. Malar J. 2016;15(1):552. https://doi.org/10.1186/s12936-016-1603-0 PMid:27836016 DOI: https://doi.org/10.1186/s12936-016-1603-0

Sulistyawati S, Fitriani I. Risk Factor and cluster analysis to identify malaria hot spot for control strategy in samigaluh sub-district, Kulon Progo, Indonesia.Iran J Public Health. 2019;48(9):1647-53. https://doi.org/10.18502/ijph.v48i9.3024 PMid:31700820 DOI: https://doi.org/10.18502/ijph.v48i9.3024

Ekawati LL, Johnson KC, Jacobson JO, Cueto CA, Zarlinda I, Elyazar IRF, et al. Defining malaria risks among forest workers in Aceh, Indonesia: A formative assessment. Malar J. 2020;19(1):441. https://doi.org/10.1186/s12936-020-03511-2 PMid:33256743 DOI: https://doi.org/10.1186/s12936-020-03511-2

Rahim MA, Munajat MB, Idris ZM. Malaria distribution and performance of malaria diagnostic methods in Malaysia (1980-2019): A systematic review. Malar J. 2020;19(1):395. https://doi.org/10.1186/s12936-020-03470-8 PMid:33160393 DOI: https://doi.org/10.1186/s12936-020-03470-8

Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: Occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89. https://doi.org/10.1186/1756-3305-4-89 PMid:21612587 DOI: https://doi.org/10.1186/1756-3305-4-89

Edwards HM, Chinh VD, Le Duy B, Thanh PV, Thang ND, Trang DM, et al. Characterising residual malaria transmission in forested areas with low coverage of core vector control in central Viet Nam. Parasit Vectors. 2019;12(1):454. https://doi.org/10.1186/s13071-019-3695-1 PMid:31533794 DOI: https://doi.org/10.1186/s13071-019-3695-1

Edwards HM, Sriwichai P, Kirabittir K, Prachumsri J, Chavez IF, Hii J. Correction to: Transmission risk beyond the village: Entomological and human factors contributing to residual malaria transmission in an area approaching malaria elimination on the Thailand-Myanmar border. Malar J. 2019;18(1):248. https://doi.org/10.1186/s12936-019-2852-5 PMid:31340814 DOI: https://doi.org/10.1186/s12936-019-2852-5

Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: A systematic review and meta-analysis. Malar J. 2015;14:209. https://doi.org/10.1186/s12936-015-0724-1 PMid:26055986 DOI: https://doi.org/10.1186/s12936-015-0724-1

Tusting LS, Bottomley C, Gibson H, Kleinschmidt I, Tatem AJ, Lindsay SW, et al. Housing improvements and malaria risk in sub-Saharan Africa: A multi-country analysis of survey data. PLoS Med. 2017;14(2):e1002234. https://doi.org/10.1371/journal.pmed.1002234 PMid:28222094 DOI: https://doi.org/10.1371/journal.pmed.1002234

Ng’ang’a PN, Okoyo C, Mbogo C, Mutero CM. Evaluating effectiveness of screening house eaves as a potential intervention for reducing indoor vector densities and malaria prevalence in Nyabondo, Western Kenya. Malar J. 2020;19(1):341. https://doi.org/10.21203/rs.2.18504/v2 PMid:32950061 DOI: https://doi.org/10.1186/s12936-020-03413-3

Kirby MJ, Green C, Milligan PM, Sismanidis C, Jasseh M, Conway D, et al. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in The Gambia. Malar J. 2008;7:2. https://doi.org/10.1186/1475-2875-7-2 PMid:18179686 DOI: https://doi.org/10.1186/1475-2875-7-2

Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GE, Emerson PM. Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health. 2003;8(6):512-7. https://doi.org/10.1046/j.1365-3156.2003.01059.x PMid:12791056 DOI: https://doi.org/10.1046/j.1365-3156.2003.01059.x

Massebo F, Lindtjørn B. The effect of screening doors and windows on indoor density of Anopheles arabiensis in South-West Ethiopia: A randomized trial. Malar J. 2013;12:319. https://doi.org/10.1186/1475-2875-12-319 PMid:24028542 DOI: https://doi.org/10.1186/1475-2875-12-319

Hasyim H, Dhimal M, Bauer J, Montag D, Groneberg DA, Kuch U, Müller R. Does livestock protect from malaria or facilitate malaria prevalence? A cross-sectional study in endemic rural areas of Indonesia. Malar J. 2018;17(1):302. https://doi.org/10.1186/s12936-018-2447-6 PMid:30126462 DOI: https://doi.org/10.1186/s12936-018-2447-6

Yamamoto SS, Louis VR, Sié A, Sauerborn R. The effects of zooprophylaxis and other mosquito control measures against malaria in Nouna, Burkina Faso. Malar J. 2009;8:283. https://doi.org/10.1186/1475-2875-8-283 PMid:20003189 DOI: https://doi.org/10.1186/1475-2875-8-283

Idrees M, Jan AH. Failure of zooprophylaxis: Cattle ownership increase rather than reduce the prevalence of malaria in district dir, NWFP of Pakistan. J Med Sci. 2001;1:52-4. https://doi.org/10.3923/jms.2001.52.54 DOI: https://doi.org/10.3923/jms.2001.52.54

Mayagaya SV, Nkwengulila G, Lyimo NI, Kihonda J, Mtambala H, Ngonyani H, et al. The impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria vectors in Southern Tanzania. Malar J. 2015;14:1-14. https://doi.org/10.1186/s12936-014-0536-8 DOI: https://doi.org/10.1186/s12936-014-0536-8

Iwashita H, Dida GO, Sonye GO, Sunahara T, Futami K, Njenga SM, et al. Push by a net, pull by a cow: Can zooprophylaxis enhance the impact of insecticide treated bed nets on malaria control? Parasit Vectors. 2014;7:52. https://doi.org/10.1186/1756-3305-7-52 PMid:24472517 DOI: https://doi.org/10.1186/1756-3305-7-52

Downloads

Published

2021-10-13

How to Cite

1.
Istiana I, Hadi U, Dachlan YP, Arwati H. Malaria at Forest Areas in South Kalimantan, Indonesia: Risk Factors and Strategies for Elimination. Open Access Maced J Med Sci [Internet]. 2021 Oct. 13 [cited 2024 Nov. 25];9(E):1147-54. Available from: https://oamjms.eu/index.php/mjms/article/view/7012

Issue

Section

Public Health Epidemiology

Categories