Ultrasound-Guided Preload Indices during Different Weaning Protocols of Mechanically Ventilated Patients and its Impact on Weaning Induced Cardiac Dysfunction
DOI:
https://doi.org/10.3889/oamjms.2021.7026Keywords:
Weaning from mechanical ventilation, Spontaneous breathing trial, IVC indices, Internal jugular venous indices, Mitral Septal E/E’, Tricuspid annular planimetric systolic excursionAbstract
BACKGROUND: Elevation of the left ventricular (LV) filling pressure can occur during weaning of mechanical ventilation due to increase in LV preload and/or changes in LV compliance and LV afterload.
AIM: The aim of the study was to evaluate respiratory changes in internal jugular vein and inferior vena cava during weaning from mechanical ventilation.
METHODS: Prospective observational study conducted on 80 consecutive patients. Patients were divided randomly into two groups who met the readiness criteria to start spontaneous breathing trial (SBT) either on pressure support ventilation (PS/CPAP) for 30 min or T-piece for 120 min. Weaning failure was defined as a failed SBT or reintubation within 48 h. Echocardiographic evaluation was done on assisted controlled ventilation and at the end of SBT for preload assessment.
RESULTS: Mitral Septal E/E’ Cutoff value ≥6.1 with sensitivity 81% and specificity 84.2%, and AUC 0.73 for predicting weaning failure. IVC distensibility index on CPAP cutoff value ≥66.5% with sensitivity 100% and specificity 68.4%, and AUC 0.85. In Group II, Mitral Septal E/E’ Cut off value ≥5.8 with sensitivity 83% and specificity 90.9%, AUC 0.83, IVC collapsibility index Cut off value ≥45.5% with sensitivity 72% and specificity 86%, AUC 0.73.
CONCLUSION: Mitral Septal E/E’ could predict weaning-induced diastolic dysfunction. IVC plays an important role in predicting weaning failure.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Hasan A, Hasan A. Ventilator settings. In: Understanding Mechanical Ventilation. Berlin, Germany: Springer; 2010. DOI: https://doi.org/10.1007/978-1-84882-869-8
Constant J. Using internal jugular pulsations as a manometer for right atrial pressure measurements. Cardiology. 2000;93(1-2):26-30. https://doi.org/10.1159/000006998 PMid:10894903 DOI: https://doi.org/10.1159/000006998
Sankoff J, Zidulka A. Non-invasive method for the rapid assessment of central venous pressure: Description and validation by a single examiner. West J Emerg Med. 2008;9(4):201-5. PMid:19561745
Conn RD, O’Keefe JH. Simplified evaluation of the jugular venous pressure: Significance of inspiratory collapse of jugular veins. Mo Med. 2012;109(2):150-2. PMid:22675798
Chua Chiaco JM, Parikh NI, Fergusson DJ. The jugular venous pressure revisited. Cleve Clin J Med. 2013;80(10):638-44. https://doi.org/10.3949/ccjm.80a.13039 PMid:24085809 DOI: https://doi.org/10.3949/ccjm.80a.13039
Boles JM, Bion J, Herridge M. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033-56. https://doi.org/10.1183/18106838.0104.281 PMid:17470624 DOI: https://doi.org/10.1183/09031936.00010206
Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, et al. The APACHE III prognostic system: Risk prediction of hospital mortality for critically III hospitalized adults. Chest. 1991;100(6):1619-36. PMid:1959406 DOI: https://doi.org/10.1378/chest.100.6.1619
Singer M, Deutschman CS, Seymour C, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801-10. https://doi.org/10.1001/jama.2016.0288 PMid:26903338 DOI: https://doi.org/10.1001/jama.2016.0287
Subirà C, Hernández G, Vázquez A, Rodríguez-Garciá R, González-Castro A, Garciá C, et al. Effect of pressure support vs T-piece ventilation strategies during spontaneous breathing trials on successful extubation among patients receiving mechanical ventilation: A randomized clinical trial. JAMA. 2019;321(22):2175-82. https://doi.org/10.1001/jama.2019.7234 PMid:31184740 DOI: https://doi.org/10.1001/jama.2019.7234
McConville JF, Kress JP. Weaning patients from the ventilator. N Engl J Med. 2012;367(23):2233-9. PMid:23215559 DOI: https://doi.org/10.1056/NEJMra1203367
Slama M, Maizel J. Echocardiographic measurement of ventricular function. Curr Opin Crit Care. 2006;12(3):241-8. https://doi.org/10.1097/01.ccx.0000224869.86205.1a PMid:16672784 DOI: https://doi.org/10.1097/01.ccx.0000224869.86205.1a
Gottdiener JS, Bednarz J, Devereux R, Gardin J, Klein A, Manning WJ, et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr. 2004;17(10):1086-119. https://doi.org/10.1016/s0894-7317(04)00675-3 PMid:15452478 DOI: https://doi.org/10.1016/j.echo.2004.07.013
Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2016;29(4):277-314. https://doi.org/10.1093/ehjci/jew082 PMid:27037982 DOI: https://doi.org/10.1016/j.echo.2016.01.011
Aloia E, Cameli M, D’Ascenzi F, Sciaccaluga C, Mondillo S. TAPSE: An old but useful tool in different diseases. Int J Cardiol. 2016;225:177-83. https://doi.org/10.1016/j.ijcard.2016.10.009 PMid:27728861 DOI: https://doi.org/10.1016/j.ijcard.2016.10.009
Ilyas A, Ishtiaq W, Assad S, Ghazanfar H, Mansoor S, Haris M, et al. Correlation of IVC diameter and collapsibility index with central venous pressure in the assessment of intravascular volume in critically ill patients. Cureus. 2017;9(2):e1025. https://doi.org/10.7759/cureus.1025 PMid:28348943 DOI: https://doi.org/10.7759/cureus.1025
Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme JL, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740-6. https://doi.org/10.1007/s00134-004-2259-8 PMid:15034650 DOI: https://doi.org/10.1007/s00134-004-2259-8
Killu K, Coba V, Huang Y, Andrezejewski T, Dulchavsky S. Internal jugular vein collapsibility index associated with hypovolemia in the intensive care unit patients. Crit Ultrasound J. 2010; https://doi.org/10.1007/s13089-010-0034-3 DOI: https://doi.org/10.1007/s13089-010-0034-3
Zein H, Baratloo A, Negida A, Safari S. Ventilator weaning and spontaneous breathing trials; an educational review. Emergency. 2016;2:13-7.
Liu J, Shen F, Teboul JL, Anguel N, Beurton A, Bezaz N, et al. Cardiac dysfunction induced by weaning from mechanical ventilation: Incidence, risk factors, and effects of fluid removal. Crit Care. 2016;20(1):369. https://doi.org/10.1186/s13054-016-1533-9 PMid:27836002 DOI: https://doi.org/10.1186/s13054-016-1533-9
Sanfilippo F, Di Falco D, Noto A, Santonocito C, Morelli A, Bignami E, et al. Association of weaning failure from mechanical ventilation with transthoracic echocardiography parameters: A systematic review and meta-analysis. Br J Anaesth. 2021;126(1):319-30. https://doi.org/10.1016/j.bja.2020.07.059 PMid:32988600 DOI: https://doi.org/10.1016/j.bja.2020.07.059
Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. J Am Med Assoc. 2004;291(14):1753-62. https://doi.org/10.1001/jama.291.14.1753 PMid:15082703 DOI: https://doi.org/10.1001/jama.291.14.1753
Moschietto S, Doyen D, Grech L, Dellamonica J, Hyvernat H, Bernardin G. Transthoracic echocardiography with doppler tissue imaging predicts weaning failure from mechanical ventilation: Evolution of the left ventricle relaxation rate during a spontaneous breathing trial is the key factor in weaning outcome. Crit Care. 2012;16(3):R81. https://doi.org/10.1186/cc11339 PMid:22583512 DOI: https://doi.org/10.1186/cc11339
Schifelbain LM, Vieira SR, Brauner JS, Pacheco DM, Naujorks AA. Echocardiography-Doppler evaluation during weaning process. Ann Intensive Care. 2018;8(1):7. http://doi.org/10.1186/s13613-017-0345-7 DOI: https://doi.org/10.1186/s13613-017-0345-7
Rojek-Jarmuła A, Hombach R, Krzych ŁJ. APACHE II score predicts mortality in patients requiring prolonged ventilation in a weaning center. Anaesthesiol Intensive Ther. 2016;48(4):215-9. https://doi.org/10.5603/ait.a2016.0036 PMid:27595745 DOI: https://doi.org/10.5603/AIT.a2016.0036
Bien U, Peres Costa I, Arena LS. Identifying apache ii and sofa threshold values that predict successful weaning and extubation from mechanical ventilation. Am J Respir Crit Care Med. 2016;193:5295.
Metwally A, El-Sokary R, Abd-Latif H, Ahmed G. Pressure support ventilation (PSV) mode vs. (PSV)mode + T-piece trial as a weaning modality in mechanically ventilated chronic obstructive pulmonary disease patients. Eur Respirat J. 2018;52:PA2336. https://doi.org/10.1183/13993003.congress-2018.pa2336 DOI: https://doi.org/10.1183/13993003.congress-2018.PA2336
Schifelbain LM, Vieira SR, Brauner JS, Pacheco DM, Naujorks AA. Echocardiographic evaluation during weaning from mechanical ventilation. Clinics. 2011;66(1):107-11. https://doi.org/10.1590/s1807-59322011000100019 PMid:21437445 DOI: https://doi.org/10.1590/S1807-59322011000100019
Prospective observational study on evaluation of cardiac dysfunction induced during the weaning process. Indian J Crit Care Med. 2019;23(1):15-9. PMid:31065203 DOI: https://doi.org/10.5005/jp-journals-10071-23106
Haji K, Haji D, Canty DJ, Royse AG, Green C, Royse CF. The impact of heart, lung and diaphragmatic ultrasound on prediction of failed extubation from mechanical ventilation in critically ill patients: A prospective observational pilot study. Crit Ultrasound J. 2018;10(1):13. https://doi.org/10.1186/s13089-018-0096-1 PMid:29971618 DOI: https://doi.org/10.1186/s13089-018-0096-1
Caille V, Amiel JB, Charron C, Belliard G, Vieillard-Baron A, Vignon P. Echocardiography: A help in the weaning process. Crit Care. 2010;14(3):R120. https://doi.org/10.1186/cc9076 PMid:20569504 DOI: https://doi.org/10.1186/cc9076
Papanikolaou J, Makris D, Saranteas T, Karakitsos D, Zintzaras E, Karabinis A, et al. New insights into weaning from mechanical ventilation: Left ventricular diastolic dysfunction is a key player. Intensive Care Med. 2011;37(12):1976-85. https://doi.org/10.1007/s00134-011-2368-0 PMid:21976188 DOI: https://doi.org/10.1007/s00134-011-2368-0
Lamia B, Maizel J, Ochagavia A, Chemla D, Osman D, Richard C, et al. Echocardiographic diagnosis of pulmonary artery occlusion pressure elevation during weaning from mechanical ventilation. Crit Care Med. 2009;37(5):1696-701. https://doi.org/10.1097/ccm.0b013e31819f13d0 PMid:19325473 DOI: https://doi.org/10.1097/CCM.0b013e31819f13d0
Maragiannis D, Nagueh SF. Echocardiographic evaluation of left ventricular diastolic function: An update. Curr Cardiol Rep. 2015;17(2):3. https://doi.org/10.1007/s11886-014-0561-9 PMid:25618306 DOI: https://doi.org/10.1007/s11886-014-0561-9
Haji DL, Ali MM, Royse A, Canty DJ, Clarke S, Royse CF. Interatrial septum motion but not doppler assessment predicts elevated pulmonary capillary wedge pressure in patients undergoing cardiac surgery. Anesthesiology. 2014;121(4):719-29. https://doi.org/10.1097/aln.0000000000000392 PMid:25089641 DOI: https://doi.org/10.1097/ALN.0000000000000392
Konomi I, Tasoulis A, Kaltsi I, Karatzanos E, Vasileiadis I, Temperikidis P, et al. Left ventricular diastolic dysfunction-an independent risk factor for weaning failure from mechanical ventilation. Anaesth Intensive Care. 2016;44(4):466-73. https://doi.org/10.1177/0310057x1604400408 PMid:27456176 DOI: https://doi.org/10.1177/0310057X1604400408
Saeed AM, Elshahed GS, Osman NM, Gomaa AA, Fahyim SM. Study of diaphragmatic mobility by chest ultrasound and echocardiographic changes in chronic obstructive pulmonary disease patients on different modes of mechanical ventilation. Egypt J Bronchol. 2018;13:399-404. https://doi.org/10.4103/ejb.ejb_99_18 DOI: https://doi.org/10.4103/ejb.ejb_99_18
Da Costa AD, De Mello Rieder M, Vieira SR. Weaning from mechanical ventilation by using pressure support or T-tube ventilation. Comparison between patients with and without heart disease. Arq Bras Cardiol. 2005;85(1):32-8. PMid:16041452
El Morttada A, Moteleb A. Using echocardiography and chest ultrasound for guidance of management of difficult-to-wean COPD patients. J Cardiol Curr Res. 2018;11(4):178-84. https://doi.org/10.15406/jccr.2018.11.00394 DOI: https://doi.org/10.15406/jccr.2018.11.00394
Airapetian N, Maizel J, Alyamani O, Mahjoub Y, Lorne E, Levrard M, et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Crit Care. 2015;19:400. https://doi.org/10.1186/s13054-015-1100-9 PMid:26563768 DOI: https://doi.org/10.1186/s13054-015-1100-9
Bauman Z, Coba V, Gassner M, Amponsah D, Gallien J, Blyden D, et al. Inferior vena cava collapsibility loses correlation with internal jugular vein collapsibility during increased thoracic or intra-abdominal pressure. J Ultrasound. 2015;18(4):343-8 https://doi.org/10.1007/s40477-015-0181-2 PMid:26550073 DOI: https://doi.org/10.1007/s40477-015-0181-2
Juhl-Olsen P, Frederiksen CA, Sloth E. Ultrasound assessment of inferior vena cava collapsibility is not a valid measure of preload changes during triggered positive pressure ventilation: A controlled cross-over study. Ultraschall Med. 2012;33(2):152-9 https://doi.org/10.1055/s-0031-1281832 PMid:22179799 DOI: https://doi.org/10.1055/s-0031-1281832
Tongyoo S, Thomrongpairoj P, Permpikul C. Efficacy of echocardiography during spontaneous breathing trial with lowlevel pressure support for predicting weaning failure among medical critically ill patients. Echocardiography. 2019;36(4):659-65. https://doi.org/10.1111/echo.14306 PMid:30834600 DOI: https://doi.org/10.1111/echo.14306
Saritaş A, Zincircioğlu Ç, Uzun Saritaş P, Uzun U, Köse I, Şenoğlu N. Comparison of inferior vena cava collapsibility, distensibility, and delta indices at different positive pressure supports and prediction values of indices for intravascular volume status. Turkish J Med Sci. 2019;49(4):1170-8. https://doi.org/10.3906/sag-1810-52 PMid:31340632 DOI: https://doi.org/10.3906/sag-1810-52
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Dina Zeid, Walid Ahmed, Randa Soliman, Abdou Alazab, Ahmed Samir Elsawy (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0