Fecal Markers of Environmental Enteric Dysfunction and their Relation to Faltering Growth in a Sample of Egyptian Children

Authors

  • Maged A. El Wakeel Department of Child Health, National Research Centre, Giza, Egypt image/svg+xml
  • Ghada M. El-Kassas Department of Child Health, National Research Centre, Giza, Egypt
  • Gihan Fouad Ahmed Department of Pediatrics, National Nutrition Institute, Cairo, Egypt
  • Walaa H. Ali Department of Child Health, National Research Centre, Giza, Egypt
  • Eman Mohamed Elsheikh Department of Child Health, National Research Centre, Giza, Egypt
  • Salwa Refat El-Zayat Department of Medical Physiology, National Research Centre, Giza, Egypt
  • Nevein N. Fadl Department of Medical Physiology, National Research Centre, Giza, Egypt
  • Iman H. Kamel Department of Child Health
  • Thanaa M. Rabah Department of Community Medicine Research, National Research Centre, Giza, Egypt

DOI:

https://doi.org/10.3889/oamjms.2021.7029

Keywords:

Environmental enteric dysfunction, Undernutrition, Fecal markers, Micronutrients, Children

Abstract

BACKGROUND: Chronic malnutrition is a long-term health condition that has threatening effects on children’s health. Environmental enteric dysfunction (EED) is a subclinical disorder affecting the small intestine that may occur due to exposure to environmental pathogens and toxins.

AIM: The present research was intended to detect the value of fecal biomarkers of intestinal epithelial damage alpha-1anti-trypsin (AAT) and intestinal inflammation Myeloperoxidase (MPO) and Neopetrin (NEO), also to quantify their association with faltering growth in stunted and underweight children.

PATIENTS AND METHODS: This case–control study included 105 children with moderate malnutrition as a case group and 100 children of normal body weight and height as a control group. Quantification of fecal markers levels of intestinal permeability AAT and intestinal inflammation (NEO and MPO) along with serum micronutrients levels (iron and zinc) in children with malnutrition in comparison to controls.

RESULTS: Fecal markers of intestinal permeability AAT and intestinal inflammation NEO had statistically significant higher levels in children with malnutrition, while serum micronutrients (iron and zinc) had statistically significant lower levels in children with malnutrition.

CONCLUSION: Faltering growth is associated with elevated fecal markers of intestinal permeability AAT and intestinal inflammation NEO. EED may be a cause for faltering growth.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Smith L, Haddad L. Reducing child and undernutrition: Past drivers and priorities for post MDG era. World Dev. 2015;68:180-204. https://doi.org/10.1016/j.worlddev.2014.11.014 DOI: https://doi.org/10.1016/j.worlddev.2014.11.014

Hassan S, Wahed WA, Eldessouki R. Nutritional status and some sociodemographic and lifestyle chracteristics among a group of rural school children in Fayoum governorate, Egypt. Egypt J Community Med. 2018;36(2):11. DOI: https://doi.org/10.21608/ejcm.2018.11043

Sania A. The contribution of preterm birth and intrauterine growth restriction to childhood undernutrition in Tanzania. Matern Child Nutr. 2015;11(4):618-63. http://doi.org/10.1111/ppe.12085 PMid:24117986 DOI: https://doi.org/10.1111/mcn.12123

Arndt M, Richardson B, Ahmed T, Mahfuz M, Haque R, John- Stewart G, et al. Fecal markers of environmental enteropahty and subsequent growth in Bangaladeshi children. Am J Trop Met Hyg. 2016;95(3):694-701. http://doi.org/10.4269/ajtmh.16-0098 PMid:27352872 DOI: https://doi.org/10.4269/ajtmh.16-0098

Kosek M, Haque R, Lima A, Babji S, Shrestha S, Qureshi S, et al. Fecal markers of intestinal inflammation and permeability associated with the subsequent acquisition of linear growth deficits in infants. Am J Trop Med Hyg. 2013;88(2):390-6. http://doi.org/10.4269/ajtmh.2012.12-0549 PMid:23185075 DOI: https://doi.org/10.4269/ajtmh.2012.12-0549

Korpe PS, Petri WA. Environmental enteropathy: Critical implications of a poorly understood condition. Trends Mol Med. 2012;18(6):328-36. http://doi.org/10.1016/j.molmed.2012.04.007 PMid:22633998 DOI: https://doi.org/10.1016/j.molmed.2012.04.007

Carne R, Jones K, Berklegy J. Environmental enteric dysfunction: An overview. Food and Nutr Bull. 2015;36(1):76-87. http://doi.org/10.1177/15648265150361S113 PMid:25902619 DOI: https://doi.org/10.1177/15648265150361S113

Fahim S, Das S, Sanin K, Gazi M, Mahfuz M, Islam M, et al. Association of fecal markers of environmental enteric dysfunction with zinc and iron status among children at first two years of life in Bangladesh. Am J Trop Met Hyg. 2018;99(2):489-94. http://doi.org/10.4269/ajtmh.17-0985 PMid:29893201 DOI: https://doi.org/10.4269/ajtmh.17-0985

Hossain M, Haque R, Mondal D, Mahfuz M. Ahmed A, Islam M. Undernutrition, Vitamin A and iron deficiency are associated with impaired intestinal mucosal permeability in Young Bangladesh children assessed by Lactulose/Mannitol test. PLoS One. 2016;11(12):e0164447. http://doi.org/10.1371/journal.Pone.016447 PMid:27906964 DOI: https://doi.org/10.1371/journal.pone.0164447

Li F, Wilkens L, Novotny R, Fialkowski M, Paulino Y, Nelson R, et al. Anthropometric measurement standardization in the US-Affiliated Pacific: Report from the children’s healthy living program. Am J Hum Biol. 2016;28(3):364-71. http://doi.org/10.1002/ajhb.22796 PMid:26457888 DOI: https://doi.org/10.1002/ajhb.22796

World Health Organization. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006;450(1):76-85. http://doi.org/10.1111/j.1651-2227.2006.tb02378.x PMid:16817681 DOI: https://doi.org/10.1111/j.1651-2227.2006.tb02378.x

Ashaat EA, Taman KH, Kholoussi N, El Ruby MO, Zaki ME, El Wakeel MA, et al. Altered Adaptive cellular immune function in a group of Egyptian children with autism. J Clin Diagn Res. 2017;11(10):SC14-7. http://doi.org/10.7860/JCDR/2017/28124.10782 DOI: https://doi.org/10.7860/JCDR/2017/28124.10782

World Health Organization. WHO AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the Worlds’s Children and Adolescents. Geneva: World Health Organization; 2009.

Prata M, Havt H, Bolick D, Pinkertorn R, Lima A, Guerrant RL. Comparisons between myeloperoxidase, lactoferrin, calprotectin and lipocalin- 2, as fecal biomarkers of intestinal inflammation in malnourished children. J Transl Sci. 2016;2(2):134-49. http://doi.org/10.15761/JTS.1000130 PMid:27746954 DOI: https://doi.org/10.15761/JTS.1000130

Perin J, Burrowes V, Almeida M, Ahmed S, Haque R, Parvin T, et al. A retrospective case control study of the relationship between the gut microbiota, enteropathy, and child growth. Am J Trop Met Hyg. 2020;103(1):520-7. http://doi.org/10.4269/ajtmh.19-0761 PMid:32431271 DOI: https://doi.org/10.4269/ajtmh.19-0761

Meheta N, Corkins M, Layman B, Malone A, Goday P. Definition of pediatric malnutrition: A paradigm shift toward etiology related definitions. J Parenter Enteral Nutr. 2013;37(4):460-81. http://doi.org/10.1177/0884533616671861 PMid:30865345 DOI: https://doi.org/10.1177/0148607113479972

Dereje A, Alemayehu Y, Afework B, Alessandra B. Comparison of mid upper arm circumference and weight for height Z score in identifying severe acute malnutrition among children aged between 6-59 months in South Gondar Zone, Ethiopia. J Nutr Metab. 2021;2021:8830494. https://doi.org/10.1155/2021/8830494 DOI: https://doi.org/10.1155/2021/8830494

Lindenmayer G, Stoltzfus R, Prendergast A. Interaction between Zinc deficiency and environmental enteropathy in developing countries. Adv Nutr. 2014;5(1):1-6. https://doi.org/10.3945/an.113.004838 PMid:24425714 DOI: https://doi.org/10.3945/an.113.004838

Park S, Choi H, Yang H, Yim J. Effects of zinc supplementation on catch-up growth in children with failiure to thrive. Nutr Res Pract. 2017;11(6):487-91. https://doi.org/10.4162/nrp.2017.11.6.487 PMid:29209459 DOI: https://doi.org/10.4162/nrp.2017.11.6.487

Abd El-Shaheed A, El-Arab AE, Abou-Zekri M, El Wakeel MA, El-Kassas GM, Mohsen NA, et al. A novel gluten-free meal as a nutritional therapy for Iron deficiency anemia in children with celiac disease. Biosci Res. 2018;15(1):207-14.

Bains K, Kaur H, Bajwa N, Kaur G, Kapoor S, Singh A. Iron and zinc status of 6-moth to 5-year- old children from low income rural familes of Punjab India. Food Nutr Bull. 2015;36(3):254-63. https://doi.org/10.1177/0379572115597396 PMid:26385949 DOI: https://doi.org/10.1177/0379572115597396

Penny M. Zinc supplementation in public health. Ann Nutr Metab. 2013;62(1):31-42. https://doi.org/10.1159/00034826 PMid:23689111 DOI: https://doi.org/10.1159/000348263

Soliman A, De Sanctis V, Kalra S. Anemia and growth. Indian J Endocrinol Metab. 2014;18(1):S1-5. https://doi.org/10.41312230-8210.1450.8 PMid:25538873 DOI: https://doi.org/10.4103/2230-8210.145038

Lauer J, Ghosh S, Ausman L, Webb P, Bashaasha B, Agaba E, et al. Markers of environmental enteric dysfunction are associated with poor growth and iron status in rural Ugandan infants. J Nutr. 2020;150:2715-182. https://doi.org/10.1093/jn/nxaa141 DOI: https://doi.org/10.1093/jn/nxaa141

Iqbal N, Sadiq K, Sayed S, Akhund T, Umrani F, Ahmed S, et al. Promising biomarkers of environmental enteric dysfunction: A prospective cohort study in Pakistani children. Sci Rep. 2018;8:2966. https://doi.org/10.1038/s41598-018-21319-8 DOI: https://doi.org/10.1038/s41598-018-21319-8

El Wakeel MA, El-Kassas GM, Hashem SA, Abouelnaga MW, Elzaree FA, Hassan M, et al. Potential role of oxidative stress in childhood obesity and its relation to inflammation. Biosci Res. 2018;15(4):3791-9.

Sanderson I. Growth problems in children with IBD. Nat Rev Gastroenterol Hepatol. 2014;11(10):601-10. https://doi.org/10.1038/nrgastro.2014.102 PMid:24957008 DOI: https://doi.org/10.1038/nrgastro.2014.102

Downloads

Published

2021-10-10

How to Cite

1.
El Wakeel MA, El-Kassas GM, Fouad Ahmed G, Ali WH, Elsheikh EM, El-Zayat SR, Fadl NN, Kamel IH, Rabah TM. Fecal Markers of Environmental Enteric Dysfunction and their Relation to Faltering Growth in a Sample of Egyptian Children. Open Access Maced J Med Sci [Internet]. 2021 Oct. 10 [cited 2024 Nov. 21];9(B):1117-22. Available from: https://oamjms.eu/index.php/mjms/article/view/7029