The Risk of Mosquito-borne Diseases Related to Mosquito Fauna Richness and Livestock Placements in South and West Sulawesi, Indonesia
DOI:
https://doi.org/10.3889/oamjms.2022.7038Keywords:
Arbovirus, Mosquito, Diversity, Livestock, Barrier, AttractanAbstract
BACKGROUND: The local fauna of mosquitoes may have an essential role in the transmission of mosquito-borne pathogens.
AIM: The future risk of mosquito-borne diseases needs to be considered by the presence of factors that support mosquitoes and pathogens, such as the habitats, presence of host reservoirs, and placement of livestock in settlements.
METHODS: Mosquito catching methods used Animal Barrier Screen (ABS), Kelambu Trap (KT), and Human Landing Catch (HLC) in the wet and dry season. The role of a large animal in getting mosquito bites was analyzed based on the proportion of mosquitoes sampled by HLC to all collected mosquitoes. The potential vector of mosquitoes was projected based on the habitat, species density, and presence of host reservoirs.
RESULTS: Pasangkayu district had more mosquito fauna compared to North Toraja and Maros. However, the separated placement of livestock in North Toraja resulted in fewer mosquito bites to humans compare with Maros, where livestock was caged or tied directly beside individual houses. The separated placement of livestock in North Toraja and Pasangkayu acted as a barrier, while scattered placement among houses at Maros acted more as a mosquito attractant.
CONCLUSION: The habit of placing livestock separate from human settlements may reduce mosquito bites, reducing the risk of contracting mosquito-borne diseases. This finding proves using livestock as an outdoor vector control strategy to protect mosquito bites and disease transmission.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Becker N, Dušan´ P, Zgomba M, Boase C, Madon M, Dahl C, et al. Mosquitoes and Their Control. Second. London, New York: Springer Heidelberg Dordrecht; 2010. p. 3-62. https://doi.org/10.1007/978-3-540-92874-4_20 DOI: https://doi.org/10.1007/978-3-540-92874-4
Carter KH, Escalada RP, Singh P. Malaria. In: Arthropod Borne Desesases. Switzerland: Springer International Publishing; 2017. p. 325-46. DOI: https://doi.org/10.1007/978-3-319-13884-8_20
Rocha EM, Fontes G, Ehrenberg JP. Lymphatic filariasis. In: Marcondes CB, editor. Arthropod Borne Diseases. Switzerland: Springer International Publishing; 2017. p. 369-82. https://doi.org/10.1007/978-3-319-13884-8_24 DOI: https://doi.org/10.1007/978-3-319-13884-8_24
Sim S, Jupatanakul N, Dimopoulos G. Mosquito immunity against arboviruses. Viruses. 2014;6(11):4479-504. https://doi.org/10.3390/v6114479 PMid:25415198 DOI: https://doi.org/10.3390/v6114479
Cox-singh J. Zoonotic malaria : Plasmodium knowlesi, an emerging pathogen. Curr Opin Infect Dis. 2012;25(5):530-6. https://doi.org/10.1097/qco.0b013e3283558780 PMid:22710318 DOI: https://doi.org/10.1097/QCO.0b013e3283558780
Sukendra DM, Shidqon MA. Overview of Culex sp. Mosquito biting behavior as filariasis vector of Wuchereria bancrofti. J Pena Med. 2016;6(1):19-33.
Gunay F, Alten B, Simsek F, Aldemir A, Linton YM. Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors. Acta Trop. 2015;143:112-20. https://doi.org/10.1016/j.actatropica.2014.10.013 PMid:25446171 DOI: https://doi.org/10.1016/j.actatropica.2014.10.013
Souza-Neto JA, Powell JR, Bonizzoni M. Aedes aegypti vector competence studies: A review. Infect Genet Evol. 2019;67:191-209. https://doi.org/10.1016/j.meegid.2018.11.009 PMid:30465912 DOI: https://doi.org/10.1016/j.meegid.2018.11.009
Katili JA. Past and present geotectonic position of Sulawesi, Indonesia. Tectonophysics. 1978;45:289-322. https://doi.org/10.1016/0040-1951(78)90166-x DOI: https://doi.org/10.1016/0040-1951(78)90166-X
Rachman AN, Oktariza N, Muzani M. Sulawesi Island geological structure. JAGAT. 2020;4(2):1-20.
Asriany A. Local Wisdom in raising local buffalo in Randan Batu village, Tana Toraja district. Bull Nutr Fodder. 2016;12(2):64-72.
Hilmiati N. Cattle farming system on Sumbawa Island: Opportunities and Constraints for increasing productivity and income of farmers on dry land. J Soc Econ Agric. 2019;13:180.
National Statistic Agency. Social and Population; 2019. Available from: https://www.maroskab.bps.go.id. [Last accessed on 2019 Jun 18].
National Statistic Agency. Social and Population; 2019. Available from: https://www.torutkab.bps.go.id. [Last accessed on 2019 Jun 18].
National Statistic Agency. Social and Population; 2019. Available from: https://www.mamujuutarakab.bps.go.id. [Last accessed on 2019 Jun 18].
Rahma N, Hasan H, Ratnasari A, Wahid I. The application of novel methods of Animal Barrier Screen and Kelambu Trap for mosquitoe’ s surveillance in South and West Sulawesi, Indonesia. Biodiversitas. 2020;21(10):4787-94. https://doi.org/10.13057/biodiv/d211044 DOI: https://doi.org/10.13057/biodiv/d211044
Davidson JR, Wahid I, Sudirman R, Makuru V, Hasan H, Arfah AM, et al. Comparative field evaluation of kelambu traps, barrier screens and barrier screens with eaves for longitudinal surveillance of adult Anopheles mosquitoes in Sulawesi, Indonesia. Parasit Vectors. 2019;12(1):1-13. https://doi.org/10.1186/s13071-019-3649-7 PMid:31409374 DOI: https://doi.org/10.1186/s13071-019-3649-7
Davidson JR, Sudirman R, Wahid I, Baskin RN, Hasan H, Arfah AM, et al. Mark-release-recapture studies reveal preferred spatial and temporal behaviors of Anopheles barbirostris in West Sulawesi, Indonesia. Parasit Vectors. 2019;12(1):1-11. https://doi.org/10.1186/s13071-019-3640-3 DOI: https://doi.org/10.1186/s13071-019-3640-3
World Health Organization. Manual on practical entomology in malaria. In: WHO Division of Malaria and Other Parasitic Deseases. Methods and Technique. Geneva: World Health Organization; 1975.
O’Connor C, Soepanto A. Anopheles Adult Mosquito Identification Book in Indonesia. Indonesia: Department of Health, Directorate General PPM and PLP; 1999.
Ministry of Health of the Republic of Indonesia. Aedes, Culex and Mansonia Mosquito Identification Key. Jakarta: Department of Health, Directorate General PPPL; 2008.
Cornel AJ, Lee Y, Almeida AP, Johnson T, Mouatcho J, Venter M, et al. Mosquito community composition in South Africa and some neighboring countries. Parasit Vectors. 2018;11(1):1-12. https://doi.org/10.1186/s13071-018-2824-6 PMid:29859109 DOI: https://doi.org/10.1186/s13071-018-2824-6
Harbach R. The Culicidae (Diptera): A Review of Taxonomy, Classification and Phylogeny. London: Magnolia Press; 2014. p. 592-638.
Kinansi RR, Nantabah ZK, Maryani H. Mapping of diseases caused by mosquito species caught in Kotabaru, South Kalimantan using the Biplot method. Bull Health Syst Res. 2018;21(3):188-98. DOI: https://doi.org/10.22435/hsr.v21i3.71
Lase LY. Identification of Mosquito Species in Fodo Village, South Gunungsitoli District, Gunungsitoli City. Skripsi. Universitas Medan Area; 2016. Available from: http://www.repository.uma.ac.id/handle/123456789/8210. [Last accessed on 2020 Mar 03].
Elyazar IR, Sinka ME, Gething PW, Tarmidzi SN, Surya A, Kusriastuti R, et al. The distribution and bionomics of Anopheles malaria vector mosquitoes in Indonesia. Adv Parasitol. 2013;83:173-266. https://doi.org/10.1016/b978-0-12-407705-8.00003-3 PMid:23876873 DOI: https://doi.org/10.1016/B978-0-12-407705-8.00003-3
Syahribulan, Biu FM, Hassan MS. Activity time for sucking the blood of Aedes aegypti and Aedes albopictus mosquitoes in pa’lanassang village, Barombong Village, Makassar, South Sulawesi. J Health Ecol. 2015;11(4):306-14.
Burkot TR, Russell TL, Reimer LJ, Bugoro H, Beebe NW, Cooper RD, et al. Barrier screens : A method to sample blood-fed and host-seeking exophilic mosquitoes. Malar J. 2013;12:49. https://doi.org/10.1186/1475-2875-12-49 PMid:23379959 DOI: https://doi.org/10.1186/1475-2875-12-49
Davidson JR, Baskin RN, Hasan H, Burton TA, Wardiman M, Rahma N, et al. Characterization of vector communities and biting behavior in South Sulawesi with host decoy traps and human landing catches. Parasit Vectors. 2020;13(1):1-17. https://doi.org/10.1186/s13071-020-04205-z DOI: https://doi.org/10.1186/s13071-020-04205-z
Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012;28(3):114-21. https://doi.org/10.1016/j.pt.2012.01.001 PMid:22300806 DOI: https://doi.org/10.1016/j.pt.2012.01.001
Bhatt RM, Sharma SN, Uragayala S, Dash AP, Kamaraju R. Effectiveness and durability of Interceptor long-lasting insecticidal nets in a malaria endemic area of central India. Malar J. 2012;11:189. https://doi.org/10.1186/1475-2875-11-189 PMid:22682024 DOI: https://doi.org/10.1186/1475-2875-11-189
Hasyim H, Dhimal M, Bauer J, Montag D, Groneberg DA, Kuch U, et al. Does livestock protect from malaria or facilitate malaria prevalence? A cross-sectional study in endemic rural areas of Indonesia. Malar J. 2018;17(1):1-11. https://doi.org/10.1186/s12936-018-2447-6 DOI: https://doi.org/10.1186/s12936-018-2447-6
Russell PF. The value of an animal barrier in malaria control. Am Assoc Adv Sci. 1933;(101-102):36-8075. DOI: https://doi.org/10.1126/science.78.2014.101
Hewitt S, Kamal M, Muhammad N, Rowland M. An entomological investigation of the likely impact of cattle ownership on malaria in an Afghan refugee camp in the North West Frontier Province of Pakistan. Med Vet Entomol. 1994;8(2):160-4. https://doi.org/10.1111/j.1365-2915.1994.tb00156.x PMid:8025324 DOI: https://doi.org/10.1111/j.1365-2915.1994.tb00156.x
Chaccour CJ, Kobylinski KC, Bassat Q, Bousema T, Drakeley C, Alonso P, et al. Ivermectin to reduce malaria transmission: A research agenda for a promising new tool for elimination. Malar J. 2013;12(1):153. https://doi.org/10.1186/1475-2875-12-153 PMid:23647969 DOI: https://doi.org/10.1186/1475-2875-12-153
Foley DH, Bryan JH, Lawrence GW. The potential of ivermectin to control the malaria vector Anopheles farauti. Trans R Soc Trop Med Hyg. 2000;94(6):625-8. PMid:11198644 DOI: https://doi.org/10.1016/S0035-9203(00)90211-6
Mourya DT, Ilkal MA, Mishra AC, Jacob PG, Pant U, Ramanujam S, et al. Isolation of Japanese encephalitis virus from mosquitoes Karnataka state, India from 1985 to 1987. Trans R Soc Trop Med Hyg. 1989;83(4):550-2. https://doi.org/10.1016/0035-9203(89)90288-5 PMid:2575809 DOI: https://doi.org/10.1016/0035-9203(89)90288-5
Manni M, Guglielmino CR, Scolari F, Vega-Rúa A, Failloux AB, Somboon P, et al. Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector, Aedes albopictus. PLoS Negl Trop Dis. 2017;11(1):e0005332. https://doi.org/10.1371/journal.pntd.0005332 PMid:28135274 DOI: https://doi.org/10.1371/journal.pntd.0005332
Hall-Mendelin S, Pyke AT, Moore PR, Mackay IM, McMahon JL, Ritchie SA, et al. Assessment of local mosquito species incriminates Aedes aegypti as the potential vector of Zika Virus in Australia. PLoS Negl Trop Dis. 2016;10(9):1-14. https://doi.org/10.1371/journal.pntd.0004959 PMid:27643685 DOI: https://doi.org/10.1371/journal.pntd.0004959
Guzman H, Contreras-Gutierrez MA, Travassos AP, Nunes MR, Cardoso JF, Popov VL, et al. Characterization of three new insect-speci fi c flaviviruses : Their relationship to the mosquito-borne flavivirus pathogens. Am J Trop Med Hyg. 2018;98(2):410-9. https://doi.org/10.4269/ajtmh.17-0350 PMid:29016330 DOI: https://doi.org/10.4269/ajtmh.17-0350
Diallo M, Nabeth P, Ba K, Sall AA, Ba Y, Mondo M, et al. Mosquito vectors of the 1998-1999 outbreak of rift valley fever and other arboviruses (Bagaza, Sanar, Wesselsbron and West Nile) in Mauritania and Senegal. Med Vet Entomol. 2005;19(2):119-26. https://doi.org/10.1111/j.0269-283x.2005.00564.x PMid:15958020 DOI: https://doi.org/10.1111/j.0269-283X.2005.00564.x
Coffey LL, Page BL, Greninger AL, Herring BL, Russell RC, Doggett SL, et al. Enhanced arbovirus surveillance with deep sequencing: Identification of novel rhabdoviruses and bunyaviruses in Australian mosquitoes. Virology. 2014;448:146-58. https://doi.org/10.1016/j.virol.2013.09.026 PMid:24314645 DOI: https://doi.org/10.1016/j.virol.2013.09.026
Nanfack Minkeu F, Vernick KD. A systematic review of the natural virome of Anopheles mosquitoes. Viruses. 2018;10(5):1-21. https://doi.org/10.3390/v10050222 PMid:29695682 DOI: https://doi.org/10.3390/v10050222
Williams T, Ward V. Iridoviruses. In: Asgari, S., Johnson KN, editor. Densoviruses: A Highly Diverse Group of Arthropod Parvoviruses. Norfolk, UK: Caister Academic Press; 2010.
Li M, Zheng Y, Zhao G, Fu S, Wang D, Wang Z, et al. Tibet orbivirus, a novel orbivirus species isolated from Anopheles maculatus mosquitoes in Tibet, China. PLoS One. 2014;9(2):1-10. https://doi.org/10.1371/journal.pone.0088738 PMid:24533145 DOI: https://doi.org/10.1371/journal.pone.0088738
Budiyanto A, Ambarita LP, Salim M. Confirmation of Anopheles sinensis and Anopheles vagus as malaria vectors in muara enim regency, South Sumatra Province. ASPIRATOR J Vector Borne Dis Stud. 2017;9(2):51-60. https://doi.org/10.22435/aspirator.v9i2.5998.51-60 DOI: https://doi.org/10.22435/aspirator.v9i2.5998.51-60
Lindahl J, Chirico J, Boqvist S, Thu HT, Magnusson U. Occurrence of Japanese encephalitis virus mosquito vectors in relation to urban pig holdings. Am J Trop Med Hyg. 2012;87(6):1076-82. https://doi.org/10.4269/ajtmh.2012.12-0315 PMid:23033401 DOI: https://doi.org/10.4269/ajtmh.2012.12-0315
Widiarti, Tunjungsari R, Garjito TW. Molecular approach confirmation of Japanese encephalitis (JE) vector in Surabaya city, East Java. Vektora. 2014;6(2):73-8.
Bashar K, Rahman MS, Nodi IJ, Howlader AJ. Species composition and habitat characterization of mosquito (Diptera: Culicidae) larvae in semi-urban areas of Dhaka, Bangladesh. Pathog Glob Health. 2016;110(2):48-61. https://doi.org/10.1080 /20477724.2016.1179862 PMid:27241953 DOI: https://doi.org/10.1080/20477724.2016.1179862
Imbahale SS, Paaijmans KP, Mukabana WR, Van Lammeren R, Githeko AK, Takken W. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 2011;10:1-13. https://doi.org/10.1186/1475-2875-10-81 PMid:21477340 DOI: https://doi.org/10.1186/1475-2875-10-81
Zhai Y, Attoui H, Jaafar FM, Wang H, Cao Y, Fan S, et al. Isolation and full-length sequence analysis of Armigeres subalbatus totivirus, the first totivirus isolate from mosquitoes representing a proposed novel genus (Artivirus) of the family Totiviridae. J Gen Vir. 2010;91(11):2836-45. https://doi.org/10.1099/vir.0.024794-0 PMid:20702653 DOI: https://doi.org/10.1099/vir.0.024794-0
Diallo D, Sall AA, Diagne CT, Faye O, Faye O, Ba Y, et al. Zika virus emergence in mosquitoes in Southeastern Senegal, 2011. PLoS One. 2014;9(10):4-11. https://doi.org/10.1371/journal.pone.0109442 PMid:25310102 DOI: https://doi.org/10.1371/journal.pone.0109442
Bhattacharya S, Basu P, Sajal Bhattacharya C. The Southern house mosquito, Culex quinquefasciatus: Profile of a smart vector. J Entomol Zool Stud JEZS. 2016;73(42):73-81.
St Laurent B, Oy K, Miller B, Gasteiger EB, Lee E, Sovannaroth S, et al. Cow-baited tents are highly effective in sampling diverse Anopheles malaria vectors in Cambodia. Malar J. 2016;15(1):1-11. https://doi.org/10.1186/s12936-016-1488-y DOI: https://doi.org/10.1186/s12936-016-1488-y
Downloads
Published
How to Cite
License
Copyright (c) 2022 Nur Rahma, Syahribulan Syahribulan, Arini Ratnasari, Sri Nur Rahmi Nur, Mila Karmila, Risma Malasari, Hajar Hasan, Isra Wahid (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0