The Avocado (Persea americana Mill.) Leaf Extract on Streptozotocin-induced Pancreatic Cell Regeneration of White Rats (Rattus norvegicus)

Authors

  • Nurdin Rahman Department of Nutrition, Faculty of Public Health, Universitas Tadulako, City of Palu, Indonesia
  • I. Made Tangkas Department of Nutrition, Faculty of Public Health, Universitas Tadulako, City of Palu, Indonesia
  • Sri Muliyani Sabang Department of Chemistry Education, Faculty of Teacher Training and Education, Universitas Tadulako, City of Palu, Indonesia
  • Bohari Bohari Department of Nutrition, Universitas Sultan Ageng Tirtayasa, City of Serang, Indonesia https://orcid.org/0000-0001-7257-639X
  • Rukman Abdullah Department of Medical Education, Universitas Sultan Ageng Tirtayasa, City of Serang, Indonesia https://orcid.org/0000-0002-2032-530X

DOI:

https://doi.org/10.3889/oamjms.2021.7065

Keywords:

Avocado leaf extract, Histology, Pancreas, Diabetes mellitus

Abstract

Objectibe The rate of pancreatic cell regeneration after avocado leaf extract intervention in a diabetic animal model induced by streptozotocin was investigated in this study. Method: Experimental study was conducted on 18 male white rats as subjects, which were divided into 6 groups, 3 animals of each. Those were G1 (Feed + Streptozotocin + 10% Sucrose + 100 mg/kg b.w. of extract + 0.5% NaCMC), G2 (Feed + Streptozotocin + 10% Sucrose + 150 mg/kg b.w. of extract + 0.5% NaCMC), G3 (Feed + Streptozotocin + 10% Sucrose + 200 mg/kg b.w. of extract + 0.5% NaCMC), G4 (Feed + Streptozotocin + 10% sucrose + 0.5% Na-CMC), G5 (Feed + Streptozotocin + 10% sucrose + Glibenclamid + 0.5% Na-CMC), G6 (Normal healthy animal + Feed). Results: The pancreatic cells damage in animal diabetic model, G1 = 1.67 (moderate cell damage); G2 = 1.00 (mild cell damage); G3 = 0.33 (no damage); G4 = 3.00 (severe cell damage); G5 = 0.33 (no damage); G6 = 0.33 (no damage). Conclusion: The dose of 200 mg/kg b.w. of avocado leaf extract contributed the most significant recovery of pancreatic cell of diabetic animal induced with streptozotocin, equivalent to glibenclamide.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546-51. https://doi.org/10.4103/2230-8210.183480 PMid:27366724 DOI: https://doi.org/10.4103/2230-8210.183480

Kayarohanam S, Subramaniyan V, Janakiraman AK, Kumar SJ. Antioxidant, antidiabetic, and antihyperlipidemic activities of dolichandrone atrovirens in albino wistar rats. Res J Pharm Technol. 2019;12(7):3511-6. https://doi.org/10.5958/0974-360x.2019.00597.3 DOI: https://doi.org/10.5958/0974-360X.2019.00597.3

Kementerian Kemenkes RI. Main Results of Riskesdas 2018. Indonesia: Kementerian Kesehatan RI; 2018.

Harding AH, Day NE, Khaw KT, Bingham S, Luben R, Welsh A. Dietary fat and the risk of clinical type 2 diabetes: The European prospective investigation of Cancer-Norfolk study. Am J Epidemiol. 2004;159(1):73-82. https://doi.org/10.1093/aje/kwh004 PMid:14693662 DOI: https://doi.org/10.1093/aje/kwh004

Hastuti RT. Faktor-faktor Risiko Ulkus Diabetika Pada Penderita Diabetes Melitus Studi Kasus di RSUD Dr. Moewardi Surakarta. Semarang: Universitas Diponegoro; 2008. https://doi.org/10.32382/jmk.v11i1.1072 DOI: https://doi.org/10.32382/jmk.v11i1.1072

Teixeira-Lemos E, Nunes S, Teixeira F, Reis F. Regular physical exercise training assists in preventing type 2 diabetes development: Focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol. 2011;10:12. https://doi.org/10.1186/1475-2840-10-12 PMid:21276212 DOI: https://doi.org/10.1186/1475-2840-10-12

Venkateshan S, Subramaniyan V, Chinnasamy V, Chandiran S. Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet. Avicenna J Phytomed. 2016;6(5):516-25. PMid:27761421

Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):5-18. https://doi.org/10.12816/0003082 PMid:22375253 DOI: https://doi.org/10.12816/0003082

Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26. https://doi.org/10.1007/s12291-014-0446-0 PMid:25646037 DOI: https://doi.org/10.1007/s12291-014-0446-0

Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU. Comprehensive review of methodology to detect reactive oxygen species (ROS) in Mammalian species and establish its relationship with antioxidants and cancer. Antioxid Basel Switz. 2021;10(1):128. https://doi.org/10.3390/antiox10010128 DOI: https://doi.org/10.3390/antiox10010128

Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89-96. PMid:23675073

Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm J. 2016;24(5):547-53. https://doi.org/10.1016/j.jsps.2015.03.013 PMid:27752226 DOI: https://doi.org/10.1016/j.jsps.2015.03.013

Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU. A comprehensive review on source, types, effects, nanotechnology, detection, and therapeutic management of reactive carbonyl species associated with various chronic diseases. Antioxidants. 2020;9(11):1075. https://doi.org/10.3390/antiox9111075 PMid:33147856 DOI: https://doi.org/10.3390/antiox9111075

Shahreza FD. Oxidative stress, free radicals, kidney disease, and plant antioxidants. Immunopathol Persa. 2016;3(2):1-6. https://doi.org/10.15171/ipp.2017.03 DOI: https://doi.org/10.15171/ipp.2017.03

Rafieian-Kopaei M, Baradaran A, Rafieian M. Plants antioxidants: From laboratory to clinic. J Nephropathol. 2013;2(2):152-3. https://doi.org/10.5812/nephropathol.12116 PMid:24475444 DOI: https://doi.org/10.5812/nephropathol.12116

Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol Adv. 2011;29(3):365-73. https://doi.org/10.1016/j.biotechadv.2011.01.008 DOI: https://doi.org/10.1016/j.biotechadv.2011.01.008

Llorens J. Toxic neurofilamentous axonopathies-accumulation of neurofilaments and axonal degeneration. J Intern Med. 2013;273(5):478-89. https://doi.org/10.1111/joim.12030 PMid:23331301 DOI: https://doi.org/10.1111/joim.12030

Subramaniyan V, Kayarohanam S, Kumar A, Kumarasamy V. Impact of herbal drugs and its clinical application. Int J Res Pharm Sci. 2019;10(2):1340-5. https://doi.org/10.26452/ijrps.v10i2.537 DOI: https://doi.org/10.26452/ijrps.v10i2.537

Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi Sh, Farhangi A, Verdi AA. Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem. 2007;22(2):60-4. https://doi.org/10.1007/bf02913315 PMid:23105684 DOI: https://doi.org/10.1007/BF02913315

Ikebukuro K, Adachi Y, Yamada Y, Fujimoto S, Seino Y, Oyaizu H. Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats. Transplantation. 2002;73(4):512-8. https://doi.org/10.1097/00007890-200202270-00004 PMid:11889421 DOI: https://doi.org/10.1097/00007890-200202270-00004

Brereton MF, Iberl M, Shimomura K, Zhang Q, Adriaenssens AE, Proks P. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat Commun. 2014;5:4639. https://doi.org/10.1038/ncomms5639 PMid:25145789 DOI: https://doi.org/10.1038/ncomms5639

Erejuwa OO, Sulaiman SA, Wahab MS, Salam SK, Salleh MS, Gurtu S. Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int J Mol Sci. 2010;11(5):2056-66. https://doi.org/10.3390/ijms11052056 PMid:20559501 DOI: https://doi.org/10.3390/ijms11052056

Rahman N, Utami Dewi N, Bohari B. Phytochemical and antioxidant activity of avocado leaf extract (Persea americana mill.). Asian J Sci Res. 2018;11(3):357-63. https://doi.org/10.3923/ajsr.2018.357.363 DOI: https://doi.org/10.3923/ajsr.2018.357.363

Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci. 2016;5:e47. PMid:28620474 DOI: https://doi.org/10.1017/jns.2016.41

Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal. 2013;2013:162750. PMid:24470791 DOI: https://doi.org/10.1155/2013/162750

Dembinska-Kiec A, Mykkänen O, Kiec-Wilk B, Mykkänen H. Antioxidant phytochemicals against Type 2 diabetes. Br J Nutr. 2008;99(1):ES109-17. https://doi.org/10.1017/s000711450896579x PMid:18503731 DOI: https://doi.org/10.1017/S000711450896579X

Subramaniyan V, Shaik S, Bag A, Manavalan G, Chandiran S. Potential action of Rumex vesicarius (L.) against potassium dichromate and gentamicin induced nephrotoxicity in experimental rats. Pak J Pharm Sci. 2018;31(2):509-16. PMid:29618442

Rahman N, Sabang SM, Dewi NU, Bohari B, Fitrasyah SI. The dosage of the avocado leaf extract (Persea americana Mill.) on regeneration of diabetic white rats (Rattus norvegicus) renal cell. Int J Nutr Pharmacol Neurol Dis. 2020;10(3):149.

Bajaj S, Fuloria S, Subramaniyan V, Meenakshi DU, Wakode S, Kaur A. Chemical characterization and anti-inflammatory activity of phytoconstituents from Swertia alata. Plants. 2021;10(6):1109. https://doi.org/10.3390/plants10061109 PMid:34072717 DOI: https://doi.org/10.3390/plants10061109

Downloads

Published

2021-10-10

How to Cite

1.
Rahman N, Tangkas IM, Sabang SM, Bohari B, Abdullah R. The Avocado (Persea americana Mill.) Leaf Extract on Streptozotocin-induced Pancreatic Cell Regeneration of White Rats (Rattus norvegicus). Open Access Maced J Med Sci [Internet]. 2021 Oct. 10 [cited 2024 Nov. 23];9(A):849-53. Available from: https://oamjms.eu/index.php/mjms/article/view/7065