Molecular Docking Analysis of Ficus religiosa Active Compound with Anti-Inflammatory Activity by Targeting Tumour Necrosis Factor Alpha and Vascular Endothelial Growth Factor Receptor in Diabetic Wound Healing

Authors

  • Yuyun Yueniwati Department of Radiology, Faculty of Medicine, Universitas Brawijaya, Saiful Anwar Hospital, Malang, Indonesia
  • Mokhammad Fahmi Rizki Syaban Department of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia https://orcid.org/0000-0003-4287-2379
  • Nabila Erina Erwan Department of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Gumilar Fardhani Ami Putra Department of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia https://orcid.org/0000-0003-3750-1565
  • Agung Dwi Krisnayana Department of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.7068

Keywords:

Diabetic wound, Ficus religiosa, Tumour necrosis factor-alpha, Vascular endothelial growth factor receptor, In silico

Abstract

BACKGROUND: Diabetes mellitus contributes to the delayed healing of wounds causes disturbance of inflammatory cytokine. Tumour necrosis factor alpha (TNF-alpha) and Vascular Endothelial Growth Factor Receptor (VEGFR) both have a role in the persistent inflammation associated with diabetic wounds. Ficus religiosa has developed a reputation as a traditional wound healer among some java people in Indonesia.

AIM: Our study aims to discover the molecular interaction between the active constituents of F. religiosa with TNF-alpha and VEGFR.

MATERIALS AND METHODS: This research was conducted in computerized molecular docking using Protein database, Pymol, Discovery studio, and Pyrex software. A thorough literature search was conducted to identify the potential compound and molecular target for diabetic wounds. Analysis of its anti-inflammatory properties was also carried out using a passonline webserver. Pharmacokinetic analysis was performed using the Lipinski Rule of Five websites and the PreADMET website.

RESULTS: Each of the study’s active compounds has a good pharmacokinetic profile. The predictions of the compound’s structure indicate that it has a strong anti-inflammatory impact. Lupenyl acetate and Lanosterol bind more strongly to the TNF-alpha than the natural ligand, but Piperine binds more strongly to VEGFR.

CONCLUSIONS: Lupenyl acetate, Lanosterol, and Piperine compounds have anti-inflammatory effects through inhibition of TNF-alpha and VEGFR. In addition, this compound has potential to become a drug because it has good pharmacokinetics. Future studies are required to determine the effectiveness and toxicity of Lupenyl acetate, Lanosterol, and Piperine as potential treatment in diabetic wounds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Sasongko MB, Widyaputri F, Agni AN, Wardhana FS, Kotha S, Gupta P, et al. Prevalence of diabetic retinopathy and blindness in Indonesian adults with Type 2 diabetes. Am J Ophthalmol. 2017;181:79-87. http://doi.org/10.1016/j.ajo.2017.06.019 PMid:28669781 DOI: https://doi.org/10.1016/j.ajo.2017.06.019

Husen SA, Syadzha MF, Setyawan MF, Pudjiastuti P, Ansori AN, Susilo RJ, et al. Evaluation of the combination of Sargassum duplicatum, Sargassum ilicifolium, Abelmoschus esculentus, and Garcinia mangostana extracts for open wound healing in diabetic mice. Syst Rev Pharm. 2020;11:888-92.

Salazar JJ, Ennis WJ, Koh TJ. Diabetes medications: Impact on inflammation and wound healing. J Diabetes Complications. 2016;30(4):746-52. http://doi.org/10.1016/j.jdiacomp.2015.12.017 PMid:26796432 DOI: https://doi.org/10.1016/j.jdiacomp.2015.12.017

Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. Eur Surg Res. 2017;58(1-2):81-94. http://doi.org/10.1159/000454919 PMid:27974711 DOI: https://doi.org/10.1159/000454919

Mitoma H, Horiuchi T, Tsukamoto H, Ueda N. Molecular mechanisms of action of anti-TNF-α agents-comparison among therapeutic TNF-α antagonists. Cytokine. 2018;101:56-63. http://doi.org/10.1016/j.cyto.2016.08.014 PMid:27567553 DOI: https://doi.org/10.1016/j.cyto.2016.08.014

Dokun AO, Chen L, Lanjewar SS, Lye RJ, Annex BH. Glycaemic control improves perfusion recovery and VEGFR2 protein expression in diabetic mice following experimental PAD. Cardiovasc Res. 2014;101:364-72. DOI: https://doi.org/10.1093/cvr/cvt342

Ghadigaonkar S, Reddy AG, Kalakumar B, Lakshman M, Rajkumar U. Quantification of total phenolic content, total flavonoid content and evaluation of in vitro free radical scavenging activities in Ficus religiosa Linn. Pharm Innov J. 2021;10(3):84-8.

Chandrasekar SB, Bhanumathy M, Pawar AT, Somasundaram T. Phytopharmacology of Ficus religiosa. Pharmacogn Rev. 2010;4(8):195-9. http://doi.org/10.4103/0973-7847.70918 PMid:22228961 DOI: https://doi.org/10.4103/0973-7847.70918

Araldi E, Fernández-Fuertes M, Canfrán-Duque A, Tang W, Cline GW, Madrigal-Matute J, et al. Lanosterol modulates TLR4 mediated innate immune responses in macrophages. Cell Rep. 2017;19(13):2743-55. http://doi.org/10.1016/j.celrep.2017.05.093 PMid:28658622 DOI: https://doi.org/10.1016/j.celrep.2017.05.093

Kim N, Do J, Bae J, Jin HK, Kim JH, Inn KS, et al. Piperlongumine inhibits neuroinflammation via regulating NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. J Pharmacol Sci. 2018;137(2):195-201. http://doi.org/10.1016/j.jphs.2018.06.004 Mid:29970291 DOI: https://doi.org/10.1016/j.jphs.2018.06.004

Tiwari A, Mahadik KR, Gabhe SY. Piperine: A comprehensive review of methods of isolation, purification, and biological properties. Med Drug Discov. 2020;7:100027. DOI: https://doi.org/10.1016/j.medidd.2020.100027

Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al. Quercetin, inflammation and immunity. Nutrients. 2016;8(3):167. http://doi.org/10.3390/nu8030167 PMid:26999194 DOI: https://doi.org/10.3390/nu8030167

De Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem. 2016;9:1-11. http://doi.org/10.2147/AABC.S105289 PMid:27390530 DOI: https://doi.org/10.2147/AABC.S105289

Domínguez-Villa FX, Durán-Iturbide NA, Ávila-Zárraga JG. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl) indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg Chem. 2021;106:104497. http://doi.org/10.1016/j.bioorg.2020.104497 PMid:33261847 DOI: https://doi.org/10.1016/j.bioorg.2020.104497

Cho BO, Yin HH, Park SH, Byun EB, Ha HY, Jang SI. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages. Biosci Biotechnol Biochem. 2016;80(8):1520-30. http://doi.org/10.1080/09168451.2016.1171697 PMid:27068250 DOI: https://doi.org/10.1080/09168451.2016.1171697

Dutra RC, Simão da Silva KA, Bento AF, Marcon R, Paszcuk AF, Meotti FC, et al. Euphol, a tetracyclic triterpene produces antinociceptive effects in inflammatory and neuropathic pain: The involvement of cannabinoid system. Neuropharmacology. 2012;63(4):593-605. http://doi.org/10.1016/j.neuropharm.2012.05.008 PMid:22613837 DOI: https://doi.org/10.1016/j.neuropharm.2012.05.008

Alam W, Khan H, Shah MA, Cauli O, Saso L. Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules. 2020;25:4073. DOI: https://doi.org/10.3390/molecules25184073

Jing Z, Feng H. Studies on the molecular docking and amino acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis. Protein J. 2015;34(3):173-80. http://doi.org/10.1007/s10930-015-9611-4 Mid:25957260 DOI: https://doi.org/10.1007/s10930-015-9611-4

Ramírez D, Caballero J. Is it reliable to use common molecular docking methods for comparing the binding affinities of enantiomer pairs for their protein target? Int J Mol Sci. 2016;17(4):525. http://doi.org/10.3390/ijms17040525 PMid:27104528 DOI: https://doi.org/10.3390/ijms17040525

Fu Y, Zhao J, Chen Z. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Comput Math Methods Med. 2018;2018:3502514. http://doi.org/10.1155/2018/3502514 PMid:30627209 DOI: https://doi.org/10.1155/2018/3502514

Lagunin A, Filimonov D, Poroikov V. Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr Pharm Des. 2010;16(15):1703-17. http://doi.org/10.2174/138161210791164063 PMid:20222853 DOI: https://doi.org/10.2174/138161210791164063

He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, et al. Small-molecule inhibition of TNF-alpha. Science. 2005;310(5750):1022-5. http://doi.org/10.1126/science.1116304 PMid:16284179 DOI: https://doi.org/10.1126/science.1116304

Trésaugues L, Roos A, Arrowsmith C, Berglund H, Bountra C, Collins R, et al. Crystal Structure of VEGFR1 in Complex with N-(4-Chlorophenyl)-2-((pyridin-4-ylmethyl)amino)benzamide; 2009. http://doi.org/10.2210/pdb3HNG/pdb DOI: https://doi.org/10.2210/pdb3hng/pdb

Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331. http://doi.org/10.3390/ijms20184331 PMid:31487867 DOI: https://doi.org/10.3390/ijms20184331

Syaban MF, Rachman HA, Arrahman AD, Hudayana N, Khamid JP, Pratama FA. Allium sativum as antimalaria agent via falciapin protease-2 inhibitor mechanism: molecular docking perspective. Clin Res J Intern Med. 2021;2:130-5. DOI: https://doi.org/10.21776/ub.crjim.2021.002.01.4

Makhija IK, Sharma IP, Khamar D. Phytochemistry and Pharmacological properties of Ficus religiosa: An overview. Ann Biol Res. 2010;1:171-80.

Singh S, Jaiswal S. Therapeutic properties of Ficus religiosa. Int J Eng Res Gen Sci. 2014;2:149-58.

Al-Snafi AE. Pharmacology of Ficus religiosa a review. IOSR J Pharm. 2017;7(3):49-60. DOI: https://doi.org/10.9790/3013-0703014960

Biju CR, Jyotisree G, Amita S, Sruthi R. A comparative evaluation of Ficus religiosa with Ficus species for its anti-inflammatory activity: A review. J Appl Pharm Res. 2020;8:13-6.

Lipinski CA, Lombardo F, Dominy B, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. http://doi.org/10.1016/s0169-409x(00)00129-0 PMid:11259830 DOI: https://doi.org/10.1016/S0169-409X(96)00423-1

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chem Biol. 2015;1263:243-50. http://doi.org/10.1007/978-1-4939-2269-7_19 PMid:25618350 DOI: https://doi.org/10.1007/978-1-4939-2269-7_19

Kharisma V, Nugraha A. Computational study of ginger (Zingiber officinale) as E6 inhibitor in human papillomavirus Type 16 (HPV-16) infection. Biochem Cell Arch. 2020;20:3155-9.

Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One. 2010;5(8):e12029. http://doi.org/10.1371/journal.pone.0012029 PMid:20808434 DOI: https://doi.org/10.1371/journal.pone.0012029

Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2016;2(3):e1501240. http://doi.org/10.1126/sciadv.1501240 PMid:27051863 DOI: https://doi.org/10.1126/sciadv.1501240

Grinter SZ, Zou X. Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules. 2014;19(7):10150-76. http://doi.org/10.3390/molecules190710150 PMid:25019558 DOI: https://doi.org/10.3390/molecules190710150

Kharisma VD, Widyananda MH, Ansori ANM, Nege AS, Naw SW, Nugraha AP. Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res. 2021;9:435-45.

Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq- Yap YH, Hezmee MNM. The crucial roles of inflammatory mediators in inflammation: A review. Vet World. 2018;11(5):627-35. http://doi.org/10.14202/vetworld.2018.627-635 Mid:29915501 DOI: https://doi.org/10.14202/vetworld.2018.627-635

Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol Rev. 2019;14(1):50-9. http://doi.org/10.15420/ecr.2018.33.1 PMid:31131037 DOI: https://doi.org/10.15420/ecr.2018.33.1

Downloads

Published

2021-11-16

How to Cite

1.
Yueniwati Y, Syaban MFR, Erwan NE, Putra GFA, Krisnayana AD. Molecular Docking Analysis of Ficus religiosa Active Compound with Anti-Inflammatory Activity by Targeting Tumour Necrosis Factor Alpha and Vascular Endothelial Growth Factor Receptor in Diabetic Wound Healing. Open Access Maced J Med Sci [Internet]. 2021 Nov. 16 [cited 2024 Nov. 21];9(A):1031-6. Available from: https://oamjms.eu/index.php/mjms/article/view/7068