Assessment of Antimicrobial Efficacy of Nano Chitosan, Chlorhexidine, Chlorhexidine/Nano Chitosan Combination versus Sodium Hypochlorite Irrigation in Patients with Necrotic Mandibular Premolars: A Randomized Clinical Trial


  • Maha Nasr Department of Endodontics, Faculty of Dentistry, Egyptian Russian University, Badr City, Cairo Governorate, Egypt
  • Alaa Diab Department of Endodontics, Faculty of Dentistry, Cairo University, Giza, Egypt
  • Nehal Roshdy Department of Endodontics, Faculty of Dentistry, Cairo University, Giza, Egypt
  • Amira Hussein Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Giza, Egypt



Antimicrobial, Chitosan nanoparticles, Chlorhexidine, Irrigation, Necrotic pulp, Post-operative pain, Sodium hypochlorite


AIM: The study was done to assess the antimicrobial effectiveness of Chitosan Nanoparticles (CNPs), Chlorhexidine (CHX), and their combination (CHX/CNPs) versus that of Sodium hypochlorite (NaOCl) in patients with mandibular necrotic premolars and to evaluate their effects on post-operative pain after single-visit endodontic treatment.

MATERIALS AND METHODS: Sixty patients with necrotic mandibular premolars were divided randomly to four groups (n = 15) according to the used irrigating solution. Instrumentation was done using rotary ProTaper files. During instrumentation, irrigation was done using 2.5% NaOCl; afterward, canals were flushed with sterile saline. A final flush with the study irrigants was done as follows: 3% CNPs for Group A, 2% CHX for Group B, CHX/CNPs for Group C, and 5.25% NaOCl for Group D. Samples were collected from root canals before and after canal preparation then cultured to assess the number of colony-forming units/ml. All patients were instructed to record their pre- and post-operative pain levels on a numerical rating scale.

RESULTS: CNPs and CHX/CNPs were significantly more effective than either CHX or NaOCl; however, there was no significant difference between them against anaerobic bacteria. All tested irrigants were similarly effective against aerobic bacteria. CNPs and CHX/CNPs were associated with significantly lower post-operative pain levels in the first 24 h after treatment.

CONCLUSIONS: CNPs and its combination with CHX are significantly more effective than both CHX and NaOCl against anaerobic bacteria isolated from necrotic mandibular premolars. Post-operative pain intensity was significantly lower with CNPs and CNPs/CHX combination than with either NaOCl or CHX.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


Sjogren U, Figdor D, Persson S, Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J. 1997;30(5):297-306. PMid:9477818 DOI:

Kapadia M, Srirekha A, Lekha S, Savitha B, Vijay R, Archana S. Comparative evaluation of chlorhexidine and its combination with chitosan as intracanal medicaments on Enterococcus faecalis in endodontic retreatment. Dentistry. 2018;8(7):8-11. DOI:

Dutertre B, Bruinen Y. Role of codata-hdb in the centralization and distribution of information concerning the rat hybridomas. In: Rat Hybridomas and Rat Monoclonal Antibodies. Boca Raton, Florida: CRC Press; 2017. p. 475-8. DOI:

Carson KR, Goodell GG, McClanahan SB. Comparison of the antimicrobial activity of six irrigants on primary endodontic pathogens. J Endod. 2005;31(6):471-3. PMid:15917691 DOI:

Tennert C, Feldmann K, Haamann E, Al-Ahmad A, Follo M, Wrbas KT, et al. Effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilm in experimental primary and secondary endodontic infections. BMC Oral Health. 2014;14(1):1-8. DOI:

Shingare P, Chaugule V. Comparative evaluation of antimicrobial activity of miswak, propolis, sodium hypochlorite and saline as root canal irrigants by microbial culturing and quantification in chronically exposed primary teeth. Germs. 2011;1:12-21. PMid:24432254 DOI:

Jaiswal N, Sinha DJ, Singh UP, Singh K, Jandial UA, Goel S. Evaluation of antibacterial efficacy of chitosan, chlorhexidine, propolis and sodium hypochlorite on Enterococcus faecalis biofilm: An in vitro study. J Clin Exp Dent. 2017;9(9):e1066-74. PMid:29075407 DOI:

Dunavant TR, Regan JD, Glickman GN, Solomon ES, Honeyman AL. Comparative evaluation of endodontic irrigants against Enterococcus faecalis biofilms. J Endod. 2006;32(6):527-31. PMid:16728243 DOI:

Zandi H, Rodrigues RC, Kristoffersen AK, Enersen M, Mdala I, Ørstavik D, et al. Antibacterial effectiveness of 2 root canal irrigants in root-filled teeth with infection: A randomized clinical trial. J Endod. 2016;42(9):1307-13. PMid:27452293 DOI:

Ercan E, Ozekinci T, Atakul F, Gul K. Antibacterial activity of 2% chlorhexidine gluconate and 5.25% sodium hypochlorite in infected root canal: In vivo study. J Endod. 2004;30(2):84-7. PMid:14977302 DOI:

Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: A review. J Endod. 2016;42(10):1417-26. PMid:27520408 DOI:

Yadav P, Chaudhary S, Saxena RK, Talwar S, Yadav S. Evaluation of antimicrobial and antifungal efficacy of chitosan as endodontic irrigant against Enterococcus faecalis and Candida albicans biofilm formed on tooth substrate. J Clin Exp Dent. 2017;9(3):e361-7. PMid:28298975 DOI:

Ballal NV, Kundabala M, Bhat KS, Acharya S, Ballal M, Kumar R, et al. Susceptibility of Candida albicans and Enterococcus faecalis to chitosan, chlorhexidine gluconate and their combination in vitro. Aust Endod J. 2009;35(1):29-33. PMid:19452677 DOI:

Skoskiewicz-Malinowska K, Kaczmarek U, Malicka B, Walczak K, Zietek M. Application of chitosan and propolis in endodontic treatment: A review. Mini Rev Med Chem. 2017;17(5):410-34. PMid:27087464 DOI:

del Carpio-Perochena A, Kishen A, Felitti R, Bhagirath AY, Medapati MR, Lai C, et al. Antibacterial properties of chitosan nanoparticles and propolis associated with calcium hydroxide against single- and multispecies biofilms: An in vitro and in situ study. J Endod. 2017;43(8):1332-6. PMid:28578886 DOI:

Dasilva L, Finer Y, Friedman S, Basrani B, Kishen A. Biofilm formation within the interface of bovine root dentin treated with conjugated chitosan and sealer containing chitosan nanoparticles. J Endod. 2013;39(2):249-53. PMid:23321239 DOI:

Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod. 2008;34(12):1515-20. PMid:19026885 DOI:

Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod. 2014;40(2):285-90. PMid:24461420 DOI:

Hasanin MT, Elfeky SA, Mohamed MB, Amin RM. Production of well-dispersed aqueous cross-linked chitosan-based nanomaterials as alternative antimicrobial approach. J Inorg Organomet Polym Mater. 2018;28(4):1502-10. DOI:

Hulsmann M, Peters O, Dummer PM. Mechanical preparation of root canals: Shaping goals, techniques and means. Endod Top. 2005;10(10):30-76. DOI:

Retamozo B, Shabahang S, Johnson N, Aprecio RM, Torabinejad M. Minimum contact time and concentration of sodium hypochlorite required to eliminate Enterococcus faecalis. J Endod. 2010;36(3):520-3. PMid:20171375 DOI:

Roshdy NN, Kataia EM, Helmy NA. Assessment of antibacterial activity of 2.5% NaOCl, chitosan nano-particles against Enterococcus faecalis contaminating root canals with and without diode laser irradiation: An in vitro study. Acta Odontol Scand. 2018;77(1):39-43. PMid:30152712 DOI:

Abdeltwab W, Abdelaliem Y, Metry W, Eldeghedy M. Antimicrobial effect of chitosan and nano-chitosan against some pathogens and spoilage microorganisms. J Adv Lab Res Biol. 2019;10(1):8-15.

Perinelli DR, Fagioli L, Campana R, Lam JK, Baffone W, Palmieri GF, et al. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci. 2018;117:8-20. PMid:29408419 DOI:

Neves AS. Disinfecting oval-shaped root canals : Effectiveness of different supplementary approaches. J Endod. 2011;37(4):496-501. PMid:21419297 DOI:

Vijaykumar S, GunaShekhar M, Himagiri S. In vitro effectiveness of different endodontic irrigants on the reduction of Enterococcus faecalis in root canals. J Clin Exp Dent. 2010;2(4):1865-71. DOI:

Goud S, Aravelli S, Dronamraju S, Cherukuri G. Comparative evaluation of the antibacterial efficacy of aloe vera, 3% sodium hypochlorite, and 2% chlorhexidine gluconate against Enterococcus faecalis: An in vitro study. Cureus. 2018;10(10):e3480. PMid:30648031 DOI:

Agrawal V, Rama Rao MS, Dhingra K, Gopal VR, Mohapatra A, Mohapatra A. An in vitro comparison of antimicrobial efficacy of three root canal irrigants-BioPure MTAD, 2% chlorhexidine gluconate and 5.25% sodium hypochlorite as a final rinse against E. faecalis. J Contemp Dent Pract. 2013;14(5):842-7. PMid:24685785 DOI:

Siqueira J, Rôças I. Microbiology and Treatment of Endodontic Infections. In: Cohen’s Pathways of the Pulp. 11th ed. Amsterdam, Netherlands: Elsevier; 2011. p. 559-600. DOI:

Williamson A, Hoggart B. Pain: A review of three commonly used pain rating scales. J Clin Nurs. 2005;14(7):798-804. PMid:16000093 DOI:

Ahmed S, Ahmed A, Sikader M. Comparison of post operative pain frequency after single visit and multiple visits root canal treatment with rotary instruments on non-vital teeth. Pak Oral Dent J. 2017;37(1):158-60.

Gambarini G, Sudani DA, Di Carlo S, Pompa G, Pacifici A, Pacifici L, et al. Incidence and intensivity of postoperative pain and periapical inflammation after endodontic treatment with two different instrumentation techniques. Eur J Inflamm. 2012;10(1):99-103. DOI:

Chhabra A, Katna M, Garg N, Chhabra V. Influence of three different instrumentation techniques on the incidence of postoperative pain after endodontic treatment. Pesqui Bras Odontopediatr Clin Integr. 2018;18(1):152-5. PMid:23741536 DOI:

Wang C, Xu P, Ren L, Dong G, Ye L. Comparison of postobturation pain experience following one-visit and two-visit root canal treatment on teeth with vital pulps: A randomized controlled trial. Int Endod J. 2010;43(8):692-7. PMid:20491987 DOI:

Viyera PJ, Guardado A. Incidence and severity of post operative pain following root canal treatment of teeth with non vital pulps using hand and rotary instrumentation techniques. Endod Pract. 2009;1:27-30.

del Carpio-Perochena A, Bramante CM, Duarte MAH, de Moura MR, Aouada FA, Kishen A. Chelating and antibacterial properties of chitosan nanoparticles on dentin. Restor Dent Endod. 2015;40(3):195-201. PMid:26295022 DOI:

Moukarab DA. Evaluation of antimicrobial activity of manually agitate (nano chitosan and nano propolis) against enterococcus faecalis in comparison with sodium hypochlorite: An in-vitro study. Egypt Dent J. 2020;66(1):587-96. DOI:

Barreras US, Méndez FT, Martínez RE, Valencia CS, Rodríguez PR, Rodríguez JP. Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mater Sci Eng C. 2016;58:1182-7. PMid:26478419 DOI:

Hong L, Luo SH, Yu CH, Xie Y, Xia MY, Chen GY, et al. Functional nanomaterials and their potential applications in antibacterial therapy. Pharm Nanotechnol. 2019;7(2):129-46. PMid:30894114 DOI:

Arias-Moliz MT, Ordinola-Zapata R, Baca P, Ruiz-Linares M, García García E, Hungaro Duarte MA, et al. Antimicrobial activity of chlorhexidine, peracetic acid and sodium hypochlorite/etidronate irrigant solutions against Enterococcus faecalis biofilms. Int Endod J. 2015;48(12):1188-93. PMid:25515403 DOI:

Rôças IN, Provenzano JC, Neves MA, Siqueira JF. Disinfecting effects of rotary instrumentation with either 2.5% sodium hypochlorite or 2% chlorhexidine as the main irrigant: A randomized clinical study. J Endod. 2016;42(6):943-7. PMid:27142579 DOI:

Darcey J, Jawad S, Taylor C, Roudsari RV, Hunter M. Modern endodontic principles part 4: Irrigation. Dent Update. 2016;43(1):20-33. PMid:27024899 DOI:

Del Carpio-Perochena AE, Bramante CM, Duarte MA, Cavenago BC, Villas-Boas MH, Graeff MS, et al. Biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. J Endod. 2011;37(8):1134-8. PMid:21763908 DOI:

Pistone S, Goycoolea FM, Young A, Smistad G, Hiorth M. Formulation of polysaccharide-based nanoparticles for local administration into the oral cavity. Eur J Pharm Sci. 2017;96:381-9. PMid:27721043 DOI:

Parirokh M, Jalali S, Haghdoost AA, Abbott PV. Comparison of the effect of various irrigants on apically extruded debris after root canal preparation. J Endod. 2012;38(2):196-9. PMid:22244635

Almeida G, De Martin AS, da Bueno CE, Nowakowski A, Cunha RS. Influence of irrigating solution on postoperative pain following single-visit endodontic treatment: Randomized clinical trial. J Can Dent Assoc. 2012;78:C84. PMid:22985896

Saba K, Maxood A, Abdullah S, Riaz A, Uddin S. Comparison of frequency of pain in root canal treatment using sodium hypochlorite and chlorhexidine as root canal irrigants. J Pak Med Assoc. 2018;68(9):1334-8. PMid:30317260 DOI:

Bashetty K, Hegde J. Comparison of 2% chlorhexidine and 5.25% sodium hypochlorite irrigating solutions on postoperative pain: a randomized clinical trial. Indian J Dent Res. 2010;21(4):523-7. PMid:21187618 DOI:




How to Cite

Nasr M, Diab A, Roshdy N, Hussein A. Assessment of Antimicrobial Efficacy of Nano Chitosan, Chlorhexidine, Chlorhexidine/Nano Chitosan Combination versus Sodium Hypochlorite Irrigation in Patients with Necrotic Mandibular Premolars: A Randomized Clinical Trial. Open Access Maced J Med Sci [Internet]. 2021 Oct. 10 [cited 2023 May 31];9(D):235-42. Available from:



Dental Pathology and Endodontics