Beet (Beta vulgaris) Improve Blood Glucose and AKT2 Gene Expression in High Fat and Fructose-induced Rats
DOI:
https://doi.org/10.3889/oamjms.2021.7173Keywords:
AKT2, Antioxidant, Beet, Fat, FructoseAbstract
ABSTRACT
Background: Diet components significant effects on glucose homeostasis. A diet contains high saturated fat and fructose induces insulin resistance and enhanced blood glucose. In contrast, food containing flavonoids such as beet can improve glucose homeostasis via modulation of gene expression, e.g., AKT2, involving glucose metabolism.
Aims: This study were to evaluate the benefit of beet on AKT2 gene expression and fasting glucose.
Methods: Twenty wistar male was divided into five groups: Normal were fed a normal diet, group HFFD was given a diet containing high fat and fructose, and three groups (HFB1, HFB2, HFB3) were given a diet containing high fat and fructose for eight weeks and continuous fed beet-contained normal diet for six weeks. The percentage of beet in the diet for each 6%, 9%, and 12%, respectively.
Results: The fasting glucose was measured before and after the intervention, whereas the gene expression of AKT2 at skeletal muscle tissue was determined after the intervention. A diet high in fat and fructose increased fasting glucose levels, and a beet-contained diet decreased it.
Conclusions: The beet 9% substituted diet can improve glucose homeostasis from the effects of a high fat and fructose diet, and the expression of the AKT2 gene may have a role in the process.
Keywords: AKT2, Antioxidant, Beet, Fat, Fructose.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Huang BW, Chiang MT, Yao HT, Chiang W. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes Metab. 2004;6(2):120-6. https://doi.org/10.1111/j.1462-8902.2004.00323.x PMid:14746577 DOI: https://doi.org/10.1111/j.1462-8902.2004.00323.x
Lin CL and Lin JK. Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Mol Nutr Food Res. 2008;52(8):930-9. https://doi.org/10.1002/mnfr.200700437 PMid:18496818 DOI: https://doi.org/10.1002/mnfr.200700437
Kang GG, Francis N, Hill R, Waters D, Blanchard C, Santhakumar AB. A review of dietary polyphenols and gene expression in molecular pathways associated with Type 2 diabetes mellitus. Int J Mol Sci. 2020;21(1):140. https://doi.org/10.3390/ijms21010140 PMid:31878222 DOI: https://doi.org/10.3390/ijms21010140
Vidal PJ, López-Nicolás JM, Gandía-Herrero F, García- Carmona F. Inactivation of lipoxygenase and cyclooxygenase by natural betalains and semi-synthetic analogues. Food Chem. 2014;154:246-54. https://doi.org/10.1016/j.foodchem.2014.01.014 PMid:24518339 DOI: https://doi.org/10.1016/j.foodchem.2014.01.014
Vulić JJ, Ćebović TN, Čanadanović-Brunet JM, Ćetković GS, Čanadanović VM, Djilas SM, et al. In vivo and in vitro antioxidant effects of beetroot pomace extracts. Journal of Funct Foods. 2014;6(1):168-75. https://doi.org/10.1016/j.jff.2013.10.003 DOI: https://doi.org/10.1016/j.jff.2013.10.003
Gilchrist M, Winyard PG, Fulford J, Anning C, Shore AC, Benjamin N. Dietary nitrate supplementation improves reaction time in Type 2 diabetes: Development and application of a novel nitrate depleted beetroot juice placebo. Nitric Oxide. 2014;40:67-74. https://doi.org/10.1016/j.niox.2014.05.003 PMid:24858657 DOI: https://doi.org/10.1016/j.niox.2014.05.003
Lorizola IM, Miyamoto JÉ, Vieira AL, Sumere BR, Bezerra RM, Torsoni MA, et al. Beet (Beta vulgaris L.) stalk and leaf supplementation improves glucose homeostasis and insulin resistance markers in liver of mice exposed to a high-fat diet. Res Sq. 2020;1-26. https://doi.org/10.21203/rs.3.rs-40368/v1 DOI: https://doi.org/10.21203/rs.3.rs-40368/v1
Minic M, Rocha N, Harris J, Groeneveld MP, Leiter S, Wareham N, et al. Constitutive activation of AKT2 in humans leads to hypoglycemia without fatty liver or metabolic dyslipidemia. J Clin Endocrinol Metab. 2017;102(8):2914-21. https://doi.org/10.1210/jc.2017-00768 PMid:28541532 DOI: https://doi.org/10.1210/jc.2017-00768
Jaiswal N, Gavin MG, Quinn WJ, Luongo TS, Gelfer RG, Baur JA, et al. The role of skeletal muscle AKT in the regulation of muscle mass and glucose homeostasis. Mol Metab. 2019;28:1-13. https://doi.org/10.1016/j.molmet.2019.08.001 PMid:31444134 DOI: https://doi.org/10.1016/j.molmet.2019.08.001
Jensen PJ, Gunter LB, Carayannopoulos MO. AKT2 modulates glucose availability and downstream apoptotic pathways during development. J Biol Chem. 2010;285(23):17673-680. https://doi.org/10.1074/jbc.m109.079343 PMid:20356836 DOI: https://doi.org/10.1074/jbc.M109.079343
Chayati I, Sunarti, Marsono Y, Astuti M. Anthocyanin extract of purple corn improves hyperglycemia and insulin resistance of rats fed high fat and fructose diet via GLP1 and GLP1R mechanism. J Food Nutr Res. 2019;7(4):303-10. https://doi.org/10.12691/jfnr-7-4-7 DOI: https://doi.org/10.12691/jfnr-7-4-7
Haroun MA, Elsayed LA, Rashed LA, Mohammed MA. The effect of high fat diet and high fructose intake on insulin resistance and GLP-1 in experimental animals. Med J Cairo Univ. 2011;79(2):2332.
Lozano I, van der WR, Bietiger W, Seyfritz E, Peronet C, Pinget M, et al. High-fructose and high-fat diet-induced disorders in rats: Impact on diabetes risk, hepatic and vascular complications. Nutr Metab (Lond). 2016;13:15. https://doi.org/10.1186/s12986-016-0074-1 PMid:26918024 DOI: https://doi.org/10.1186/s12986-016-0074-1
Lichtenstein AH, Schwab US. Relationship of dietary fat to glucose metabolism. Atherosclerosis. 2000;150(2):227-43. https://doi.org/10.1016/s0021-9150(99)00504-3 PMid:10856515 DOI: https://doi.org/10.1016/S0021-9150(99)00504-3
Khitan Z, Kim DH. Fructose: A key factor in the development of metabolic syndrome and hypertension. J Nutr Metab. 2013;2013:682673. PMid:23762544 DOI: https://doi.org/10.1155/2013/682673
Ang BR, Yu GF. The role of fructose in Type 2 diabetes and other metabolic diseases. J Nutr Food Sci. 2018;8:14.
Lorizola IM, Furlan C, Portovedo M, Milanski M, Botelho PB, Bezerra R, et al. Beet stalks and leaves (Beta vulgaris L.) protect against high-fat diet-induced oxidative damage in the liver in mice. Nutrients. 2018;10(7):872. https://doi.org/10.3390/nu10070872 PMid:29976910 DOI: https://doi.org/10.3390/nu10070872
Gezginci-Oktayoglu S, Sacan O, Bolkent S, Ipci Y, Kabasakal L, Sener G, et al. Chard (Beta vulgaris L. var. cicla) extract ameliorates hyperglycemia by increasing GLUT2 through AKT2 and antioxidant defense in the liver of rats. Acta Histochem. 2014;116(1):32-9. https://doi.org/10.1016/j.acthis.2013.04.016 PMid:23746671 DOI: https://doi.org/10.1016/j.acthis.2013.04.016
Liu Y, Liang X, Zhang G, Kong L, Peng W, Zhang H. Galangin and pinocembrin from propolis ameliorate insulin resistance in HepG2 cells via regulating AKT/mTOR signaling. Evid Based Complement Alternat Med. 2018;2018:971842. https://doi.org/10.1155/2018/7971842 PMid:30420897 DOI: https://doi.org/10.1155/2018/7971842
Fang X, Gao W, Yang Z, Gao Z, Li H. Dual anti/prooxidant behaviors of flavonoids pertained to Cu (II) catalyzed tyrosine nitration of insulin receptor kinase domain in the antidiabetic study. J Agric Food Chem. 2020;68(22):6202-11. https://doi.org/10.1021/acs.jafc.0c01676 PMid:32395994 DOI: https://doi.org/10.1021/acs.jafc.0c01676
Downloads
Published
How to Cite
License
Copyright (c) 2021 M. Windi Dona Fitri, Arta Farmawati, Sunarti Sunarti (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0
Funding data
-
Kementerian Riset, Teknologi dan Pendidikan Tinggi
Grant numbers 2804/UN1.DITLIT/DIT-LIT/PT/2020