High-Glucose and Free Fatty Acid-Induced Adipocytes Generate Increasing of HMGB1 and Reduced GLUT4 Expression

Authors

  • Rita Rosita Brawijaya University
  • Yuyun Yueniwati Department of Radiology, Universitas Brawijaya, Malang, Jawa Timur, Indonesia https://orcid.org/0000-0001-9932-2015
  • Agustina Tri Endharti Department of Parasitology, Faculty of Medicine, Brawijaya University, Malang, Jawa Timur, Indonesia https://orcid.org/0000-0002-2062-5740
  • Mochamad Aris Widodo Department of Clinical Pharmacology, Faculty of Medicine, Brawijaya University, Malang, Jawa Timur, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.7199

Keywords:

Adipocytes, High Glucose, FFA, Necrotic Cell Death, Hypertrophy, Insulin Resistance

Abstract

Background

High-mobility group box 1 protein (HMGB1) is released from necrotic adipocytes into the extracellular milieu as an inflammatory alarmin in obesity. Although the impact of excess nutrient on adipocytes is well known, it is not clear how specific its component drive cell-size and damaged of adipocytes, and how this relates to the risk of insulin resistance.

Objectives

The aim of this study was to determine HMGB1 level in adipocytes cultures after high glucose and/or FFA exposures and to assess GLUT4 expression. We determined cellular features of adipocytes that correlates to HMGB1 released and insulin resistance.

Methods

Differentiated adipocytes were exposed to high glucose and/or FFAs for 7 days. ELISA was performed on supernatant to assess the HMGB1 level. Total GLUT4 expression were quantified by immunofluorescense.

Results

High glucose and FFA-exposed cells have significant increase of HMGB1 level with decreased of cell size and necrotic adipocytes features.  The total GLUT4 were reduced in HG-cells (p <0,045), but not in FFA cells. Hypertrophic adipocytes (p <0.05) and slight decrease of GLUT4 expression were showed on HG+FFA exposures with no increase of HMGB1 level. There was a significant correlation between cell size and HMGB1 level (R -0,637, p < 0.026)

Conclusion

The expression level studies between high glucose, FFA, and a combination of both on adipocytes results strongly suggest that high glucose is more damaging to adipocyte compared to FFA. Nevertheless, the combination of the two causes adipocyte dysfunction with general features of adipose tissue in obesity, suggested it can be used as a hypertrophic adipocytes model to study obesity in vitro.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Sanjabi B, Dashty M, Özcan B, Akbarkhanzadeh V, Rahimi M, Vinciguerra M, et al. Lipid droplets hypertrophy: A crucial determining factor in insulin regulation by adipocytes. Sci Rep. 2015;5:8816. https://doi.org/10.1038/srep08816 PMid:25743104 DOI: https://doi.org/10.1038/srep08816

Muir LA, Neeley CK, Meyer KA, Baker NA, Brosius AM, Washabaugh AR, et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity (Silver Spring). 2016;24(3):597-605. https://doi.org/10.1002/oby.21377 PMid:26916240 DOI: https://doi.org/10.1002/oby.21377

Meln I, Wolff G, Gajek T, Koddebusch J, Lerch S, Harbrecht L, et al. Dietary calories and lipids synergistically shape adipose tissue cellularity during postnatal growth. Mol Metab. 2019;24:139-48. https://doi.org/10.1016/j.molmet.2019.03.012 PMid:31003943 DOI: https://doi.org/10.1016/j.molmet.2019.03.012

Zhang J, Zhang L, Zhang S, Yu Q, Xiong F, Huang K, et al. HMGB1, an innate alarmin, plays a critical role in chronic inflammation of adipose tissue in obesity. Mol Cell Endocrinol. 2017;454:103-11. https://doi.org/10.1016/j.mce.2017.06.012 PMid:28619625 DOI: https://doi.org/10.1016/j.mce.2017.06.012

Wang Y, Zhong J, Zhang X, Liu Z, Yang Y, Gong Q, et al. The role of HMGB1 in the pathogenesis of Type 2 diabetes. J Diabetes Res. 2016;2016:2543268. https://doi.org/10.1155/2016/2543268 PMid:28101517 DOI: https://doi.org/10.1155/2016/2543268

Wagner M, Bjerkvig R, Wiig H, Dudley AC. Loss of adipocyte specification and necrosis augment tumor-associated inflammation. Adipocyte. 2013;2(3):176-83. https://doi.org/10.4161/adip.24472 PMid:23991365 DOI: https://doi.org/10.4161/adip.24472

Wang H, Qu H, Deng H. Plasma HMGB-1 levels in subjects with obesity and Type 2 diabetes: A cross-sectional study in China. PLoS One. 2015;10(8):e0136564. https://doi.org/10.1371/journal.pone.0136564 PMid:26317615 DOI: https://doi.org/10.1371/journal.pone.0136564

Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans.J Lipid Res. 2005;46(11):2347-55. https://doi.org/10.1194/jlr.M500294-JLR200 PMid:16150820 DOI: https://doi.org/10.1194/jlr.M500294-JLR200

Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121(6):2094-101. https://doi.org/10.1172/JCI45887 PMid:21633177 DOI: https://doi.org/10.1172/JCI45887

Hagiwara S, Iwasaka H, Hasegawa A, Koga H, Noguchi T. Effects of hyperglycemia and insulin therapy on high mobility group box 1 in endotoxin-induced acute lung injury in a rat model. Crit Care Med. 2008;36(8):2407-13. https://doi.org/10.1097/CCM.0b013e318180b3ba PMid:18596634 DOI: https://doi.org/10.1097/CCM.0b013e318180b3ba

de Souza AB, Chírico MT, Cartelle CT, de Paula Costa G, Talvani A, Cangussú SD, et al. High-fat diet increases HMGB1 expression and promotes lung inflammation in mice subjected to mechanical ventilation. Oxid Med Cell Longev. 2018;2018:7457054. https://doi.org/10.1155/2018/7457054 PMid:29619146 DOI: https://doi.org/10.1155/2018/7457054

Guzmán-Ruiz R, Ortega F, Rodríguez A, Vázquez-Martínez R, Díaz-Ruiz A, Garcia-Navarro S, et al. Alarmin high-mobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in β-cells. Int J Obes (Lond). 2014;38(12):1545-54. https://doi.org/10.1038/ijo.2014.36 PMid:24577317 DOI: https://doi.org/10.1038/ijo.2014.36

Gunasekaran MK, Viranaicken W, Girard AC, Festy F, Cesari M, Roche R, et al. Inflammation triggers high mobility group box 1 (HMGB1) secretion in adipose tissue, a potential link to obesity. Cytokine. 2013;64(1):103-11. https://doi.org/10.1016/j.cyto.2013.07.017 PMid:23938155 DOI: https://doi.org/10.1016/j.cyto.2013.07.017

Olson AL. Regulation of GLUT4 and insulin-dependent glucose flux. ISRN Mol Biol. 2012;2012:856987. https://doi.org/10.5402/2012/856987 PMid:27335671 DOI: https://doi.org/10.5402/2012/856987

Govers R. Molecular mechanisms of GLUT4 regulation in adipocytes Diabetes Metab. 2014;40(6):400-10. https://doi.org/10.1016/j.diabet.2014.01.005 PMid:24656589 DOI: https://doi.org/10.1016/j.diabet.2014.01.005

Haczeyni F, Bell-Anderson KS, Farrel GC. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev. 2018;19(3):406-20. https://doi.org/10.1111/obr.12646 PMid:29243339 DOI: https://doi.org/10.1111/obr.12646

Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015;14:121. https://doi.org/10.1186/s12944-015-0123-1 PMid:26415887 DOI: https://doi.org/10.1186/s12944-015-0123-1

Sorisky A. Effect of high glucose levels on white adipose cells and adipokines-fuel for the fire.Int J Mol Sci. 2017;18(5):944. https://doi.org/10.3390/ijms18050944 PMid:28468243 DOI: https://doi.org/10.3390/ijms18050944

Aswaty N, Ratnawati R, Lyrawati D. Catechins of GMB-4 clone inhibits adipogenesis through PPAR-γ _and adiponectin in primary culture of visceral preadipocyte of rattus norvegicus wistar. Res J Life Sci. 2018;5(1):54-65. https://doi.org/10.21776/ub.rjls.2018.005.01.6 DOI: https://doi.org/10.21776/ub.rjls.2018.005.01.6

Kraus NA, Ehebauer F, Zapp B, Rudolphi B, Kraus BJ, Kraus D. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte. 2016;5(4):351-8. https://doi.org/10.1080/21623945.2016.1240137 PMid:27994948 DOI: https://doi.org/10.1080/21623945.2016.1240137

Chu DT, Malinowska E, Gawronska-Kozak B, Kozak LP. Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. J Biol Chem. 2014;289(26):18478-88. https://doi.org/10.1074/jbc.M114.555821 PMid:24808178 DOI: https://doi.org/10.1074/jbc.M114.555821

Parlee SD, Lentz SI, Mori H, MacDougald OA. Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol. 2014;537:93-122. https://doi.org/10.1016/B978-0-12-411619-1.00006-9 PMid:24480343 DOI: https://doi.org/10.1016/B978-0-12-411619-1.00006-9

Bradley H, Shaw CS, Worthington PL, Shepherd SO, Cocks M, Wagenmakers AJ. Quantitative immunofluorescence microscopy of subcellular GLUT4 distribution in human skeletal muscle: Effects of endurance and sprint interval training. Physiol Rep. 2014;2(7):e12085. https://doi.org/10.14814/phy2.12085 PMid:25052490 DOI: https://doi.org/10.14814/phy2.12085

Sasaki D, Mitchell R. How to Obtain Reproducible Quantitative ELISA Results, Oxford Biomedical! Research, Oxford MI No. 48371; 2001. Available from: https://www.oxfordbiomed.com/sites/default/files/2017-02/how%20to%20obtain%20reproducible%20quantitative%20elisa%20results.pdf. [Last accessed on 2021 May 20].

Kim JI, Huh JY, Sohn JH, Choe SS, Lee YS, Lim CY, et al. Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. Mol Cell Biol. 2015;35(10):1686-99. https://doi.org/10.1128/MCB.01321-14 PMid:25733684 DOI: https://doi.org/10.1128/MCB.01321-14

Yang M, Antoine DJ, Weemhoff JL, Jenkins RE, Farhood A, Park BK, et al. Biomarkers distinguish apoptotic and necrotic cell death during hepatic ischemia/reperfusion injury in mice. Liver Transpl. 2014;20(11):1372-82. https://doi.org/10.1002/lt.23958 PMid:25046819 DOI: https://doi.org/10.1002/lt.23958

Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6(1):a009191. https://doi.org/10.1101/cshperspect.a009191 PMid:24384568 DOI: https://doi.org/10.1101/cshperspect.a009191

Favaretto F, Milan G, Collin GB, Marshall JD, Stasi F, Maffei P, et al. GLUT4 defects in adipose tissue are early signs of metabolic alterations in Alms1GT/GT, a mouse model for obesity and insulin resistance. PLoS One. 2014;9(10):e109540. https://doi.org/10.1371/journal.pone.0109540 PMid:25299671 DOI: https://doi.org/10.1371/journal.pone.0109540

Yeop Han C, Kargi AY, Omer M, Chan CK, Wabitsch M, et al. Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: Dissociation of adipocyte hypertrophy from inflammation. Diabetes. 2010;59(2):386-96. https://doi.org/10.2337/db09-0925 PMid:19934003 DOI: https://doi.org/10.2337/db09-0925

Jackson RM, Griesel BA, Gurley JM, Szweda LI, Olson AL. Glucose availability controls adipogenesis in mouse 3T3-L1 adipocytes via up-regulation of nicotinamide metabolism. J Biol Chem. 2017;292(45):18556-64. https://doi.org/10.1074/jbc.M117.791970 PMid:28916720 DOI: https://doi.org/10.1074/jbc.M117.791970

Magun R, Boone DL, Tsang BK, Sorisky A. The effect of adipocyte differentiation on the capacity of 3T3-L1 cells to undergo apoptosis in response to growth factor deprivation. Int J Obes Relat Metab Disord. 1998;22(6):567-71. https://doi.org/10.1038/sj.ijo.0800626 PMid:9665678 DOI: https://doi.org/10.1038/sj.ijo.0800626

Feng H, Yu L, Zhang G, Liu G, Yang C, Wang H, Song X. Regulation of autophagy-related protein and cell differentiation by high mobility group box 1 protein in adipocytes. Mediators Inflamm. 2016;2016:1936386. https://doi.org/10.1155/2016/1936386 PMid:27843198 DOI: https://doi.org/10.1155/2016/1936386

Jarc E, Petan T. Lipid droplets and the management of cellular stress. Yale J Biol Med. 2019;92(3):435-52. PMid:31543707

Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, et al. Hypertrophy and/or hyperplasia: Dynamics of adipose tissue growth. PLoS Comput Biol. 2009;5(3):e1000324. https://doi.org/10.1371/journal.pcbi.1000324 PMid:19325873 DOI: https://doi.org/10.1371/journal.pcbi.1000324

Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243- treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol. 2000;279(3):C670-81. https://doi.org/10.1152/ajpcell.2000.279.3.C670 PMid:10942717 DOI: https://doi.org/10.1152/ajpcell.2000.279.3.C670

Strieleman PJ, Schalinske KL, Shrago E. Fatty acid activation of the reconstituted brown adipose tissue mitochondria uncoupling protein. J Biol Chem. 1985;260(25):13402-5. PMid:4055740 DOI: https://doi.org/10.1016/S0021-9258(17)38735-5

Nishimoto Y, Tamori Y. CIDE family-mediated unique lipid droplet morphology in white adipose tissue and brown adipose tissue determines the adipocyte energy metabolism. J Atheroscler Thromb. 2017;24(10):989-98. https://doi.org/10.5551/jat.rv17011 PMid:28883211 DOI: https://doi.org/10.5551/jat.RV17011

Rockenfeller P, Ring J, Muschett V, Beranek A, Buettner S, Carmona-Gutierrez D, et al. Fatty acids trigger mitochondrion-dependent necrosis. Cell Cycle. 2010;9(14):2836-42. https://doi.org/10.4161/cc.9.14.12267 PMid:20647757 DOI: https://doi.org/10.4161/cc.9.14.12346

Yu J, Zhang S, Cui L, Wang W, Na H, Zhu X, et al. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim Biophys Acta. 2015;1853(5):918-28. https://doi.org/10.1016/j.bbamcr.2015.01.020 PMid:25655664 DOI: https://doi.org/10.1016/j.bbamcr.2015.01.020

Park S, Oh TS, Kim S, Kim EK. Palmitate-induced autophagy liberates monounsaturated fatty acids and increases Agrp expression in hypothalamic cells. Anim Cells Syst (Seoul). 2019;23(6):384-91. https://doi.org/10.1080/19768354.2019.1696407 PMid:31853375 DOI: https://doi.org/10.1080/19768354.2019.1696407

Nakajima S, Nishimoto Y, Tateya S, Iwahashi Y, Okamatsu-Ogura Y, Saito M, et al. Fat-specific protein 27α inhibits autophagy-dependent lipid droplet breakdown in white adipocytes. J Diabetes Investig. 2019;10(6):1419-29. https://doi.org/10.1111/jdi.13050 PMid:30927519 DOI: https://doi.org/10.1111/jdi.13050

Schulze RJ, Sathyanarayan A, Mashek DG. Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10):1178-87. https://doi.org/10.1016/j.bbalip.2017.06.008 PMid:28642194 DOI: https://doi.org/10.1016/j.bbalip.2017.06.008

Maruyama H, Kiyono S, Kondo T, Sekimoto T, Yokosuka O. Palmitate-induced regulation of PPARγ via PGC1α: A mechanism for lipid accumulation in the liver in nonalcoholic fatty liver disease. Int J Med Sci. 2016;13(3):169-78. https://doi.org/10.7150/ijms.13581 PMid:26941577 DOI: https://doi.org/10.7150/ijms.13581

Downloads

Published

2021-11-23

How to Cite

1.
Rosita R, Yueniwati Y, Endharti AT, Widodo MA. High-Glucose and Free Fatty Acid-Induced Adipocytes Generate Increasing of HMGB1 and Reduced GLUT4 Expression. Open Access Maced J Med Sci [Internet]. 2021 Nov. 23 [cited 2024 Nov. 21];9(A):1258-64. Available from: https://oamjms.eu/index.php/mjms/article/view/7199

Issue

Section

Pathophysiology

Categories