Brain Derived Neurotrophic Factor and Serotonin Levels in Autistic Children: Do They Differ in Obesity?

Authors

  • Ehab R. Abdelraouf Department of Research on Children with Special Needs, Medical Research Division, National Research Centre, Cairo, Egypt; National Research Centre, Medical Research Centre of Excellence, Cairo, Egypt https://orcid.org/0000-0002-0899-8261
  • Hend Rashad National Research Centre https://orcid.org/0000-0002-9177-2465
  • Ayman Kilany Department of Research on Children with Special Needs, Medical Research Division, National Research Centre, Cairo, Egypt; National Research Centre, Medical Research Centre of Excellence, Cairo, Egypt
  • Hala M. Zeidan Department of Research on Children with Special Needs, Medical Research Division, National Research Centre, Cairo, Egypt
  • Mohamed Elhadidy Department of Research on Children with Special Needs, Medical Research Division, National Research Centre, Cairo, Egypt https://orcid.org/0000-0001-7830-9145
  • Adel Hashish Department of Research on Children with Special Needs, Medical Research Division, National Research Centre, Cairo, Egypt https://orcid.org/0000-0001-9549-2973
  • Neveen Hassan Nashaat Department of Research on Children with Special Needs, Medical Research Division, National Research Centre, Cairo, Egypt; National Research Centre, Medical Research Centre of Excellence, Cairo, Egypt https://orcid.org/0000-0003-1553-9327
  • Fateheya M. Metwally National Research Centre, Medical Research Centre of Excellence, Cairo, Egypt; Department of Environmental and Occupational Medicine, Environmental Research Division, National Research Centre, Cairo, Egypt

DOI:

https://doi.org/10.3889/oamjms.2021.7223

Keywords:

Autism, Obesity, BDNF, Serotonin, Severity, Cognition

Abstract

BACKGROUND: The risk of obesity among autism spectrum disorder (ASD) children is high which could be related to a disorder in their metabolism. Brain derived neurotrophic factor (BDNF) is involved in metabolic control, language behavior, and intellectual development. Serotonin has a role in satiety and energy expenditure.

AIM: Therefore, the aim of this study was to measure the serum levels of BDNF and serotonin in obese compared to non-obese ASD children. The influence of obesity on ASD severity, intellectual, and language development was also investigated.

METHODS: The study included 60 autistic children (Group I: 30 ASD children with obesity and Group II: 30 ASD children without obesity). The serum BDNF and serotonin levels were estimated by ELISA and by high-performance liquid chromatography.

RESULTS: All participants manifested delayed language development. Almost all of them had intellectual disability. The difference between groups regarding ASD severity, language, and intellectual development was non-significant. However, BDNF level in obese group was less than that in the other group while serotonin was higher in the obese group with significant statistical difference.

CONCLUSION: The difference between the groups regarding the levels of BDNF and serotonin, which are involved in the brain development, could be related to obesity. The influence of obesity on ASD severity, intellectual, and language development of ASD children was not distinctive in the participants. The influence of such markers on ASD severity and cognitive performance needs further investigations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Kamal Nor N, Ghozali AH, Ismail J. Prevalence of overweight and obesity among children and adolescents with autism spectrum disorder and associated risk factors. Front Pediatr. 2019;7:38. https://doi.org/10.3389/fped.2019.00038 PMid:30842939 DOI: https://doi.org/10.3389/fped.2019.00038

Hill AP, Zuckerman KE, Fombonne E. Obesity and autism. Pediatrics. 2015;136(6):1051-61. https://doi:10.1542/peds.2015-1437 PMid:26527551 DOI: https://doi.org/10.1542/peds.2015-1437

Dhaliwal KK, Orsso CE, Richard C, Haqq AM, Zwaigenbaum L. Risk factors for unhealthy weight gain and obesity among children with autism spectrum disorder. Int J Mol Sci. 2019;20(13):3285. https://doi.org/10.3390/ijms20133285 PMid:31277383 DOI: https://doi.org/10.3390/ijms20133285

Kurth F, Narr KL, Woods RP, O’Neill J, Alger JR, Caplan R, et al. Diminished gray matter within the hypothalamus in autism disorder: A potential link to hormonal effects? Biol Psychiatry. 2011;70(3):278-82. https://doi.org/10.1016/j.biopsych.2011.03.026 PMid:21531390 DOI: https://doi.org/10.1016/j.biopsych.2011.03.026

Saleh M, Nashaat NH, Fahim C, Ibrahim AS, Meguid N. MRI surface-based brain morphometry in Egyptian autistic and typically developing children. Folia Phoniatr Logop. 2015;67(1):29-35. https://doi.org/10.1159/000368962 PMid:25967922 DOI: https://doi.org/10.1159/000368962

Cooper RA, Richter FR, Bays PM, Plaisted-Grant KC, Baron-Cohen S, Simons JS. Reduced hippocampal functional connectivity during episodic memory retrieval in autism. Cerebral Cortex. 2017;27(2):888-902. PMid:28057726 DOI: https://doi.org/10.1093/cercor/bhw417

Kasarpalkar NJ, Kothari ST, Dave UP. Brain-derived neurotrophic factor in children with autism spectrum disorder. Ann Neurosci. 2014;21(4):129-33. https://doi.org/10.5214/ans.0972.7531.210403 PMid:25452672 DOI: https://doi.org/10.5214/ans.0972.7531.210403

Meng WD, Sun SJ, Yang J, Chu RX, Tu W, Liu Q. Elevated serum brain-derived neurotrophic factor (BDNF) but not BDNF gene val66met polymorphism is associated with autism spectrum disorders. Mol Neurobiol. 2017;54(2):1167-72. https://doi.org/10.1007/s12035-016-9721-9 PMid:26820673 DOI: https://doi.org/10.1007/s12035-016-9721-9

Skogstrand K, Hagen CM, Borbye-Lorenzen N, Christiansen M, Bybjerg-Grauholm J, Bækvad-Hansen M, et al. Reduced neonatal brain-derived neurotrophic factor is associated with autism spectrum disorders. Transl Psychiatry. 2019;9(1):252. https://doi.org/10.1038/s41398-019-0587-2 DOI: https://doi.org/10.1038/s41398-019-0587-2

Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. Eur Neuropsychopharmacol. 2014;24(6):919-29. https://doi.org/10.1016/j.euroneuro.2014.02.004 PMid:24613076 DOI: https://doi.org/10.1016/j.euroneuro.2014.02.004

Oteify G, El-Ramly A, Samy A, Soliman E. Evaluation of oxytocin and serotonin levels in autism spectrum disorder. J Med Sci Res. 2018;1(1):66-71. https://doi.org/10.4103/JMISR.JMISR_9_18 DOI: https://doi.org/10.4103/JMISR.JMISR_9_18

Spivak B, Golubchik P, Mozes T, Vered Y, Nechmad A, Weizman A, et al. Low platelet-poor plasma levels of serotonin in adult autistic patients. Neuropsychobiology. 2004;50(2):157-60. https://doi.org/10.1159/000079108 PMid:15292671 DOI: https://doi.org/10.1159/000079108

Muller CL, Anacker AM, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience. 2017;321:24-41. https://doi.org/10.1016/j.neuroscience.2015.11.010 PMid:26577932 DOI: https://doi.org/10.1016/j.neuroscience.2015.11.010

Zafeiriou DI, Ververi A, Vargiami E. The serotonergic system: Its role in pathogenesis and early developmental treatment of autism. Curr Neuropharmacol. 2009;7(2):150-7. https://doi.org/10.2174/157015909788848848 PMid:19949574 DOI: https://doi.org/10.2174/157015909788848848

Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22(3):123-31. https://doi.org/10.1080/08977190410001723308 DOI: https://doi.org/10.1080/08977190410001723308

Narita M, Aoki K, Takagi M, Yajima Y, Suzuki T. Implication of brain-derived neurotrophic factor in the release of dopamine and dopamine-related behaviors induced by methamphetamine. Neuroscience. 2003;119(3):767-75. https://doi.org/10.1016/s0306-4522(03)00099-x PMid:12809697 DOI: https://doi.org/10.1016/S0306-4522(03)00099-X

Motamedi S, Karimi I, Jafari F. The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone. Metabolic Brain Dis. 2017;32(3):651-65. https://doi.org/10.1007/s11011-017-9997-0 PMid:28361262 DOI: https://doi.org/10.1007/s11011-017-9997-0

Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR. Emerging roles for serotonin in regulating metabolism: New implications for an ancient molecule. Endocrine Rev. 2019;40(4):1092-107. https://doi.org/10.1210/er.2018-00283 PMid:30901029 DOI: https://doi.org/10.1210/er.2018-00283

Meguid NA, Nashaat NH, Hashem HS, Khalil MM. Frequency of risk factors and coexisting abnormalities in a population of Egyptian children with autism spectrum disorder. Asian J Psychiatry. 2018;32:54-8. https://doi.org/10.1016/j.ajp.2017.11.037 PMid:29216607 DOI: https://doi.org/10.1016/j.ajp.2017.11.037

Zheng Z, Zhang L, Li S, Zhao F, Wang Y, Huang L, et al. Association among obesity, overweight and autism spectrum disorder: A systematic review and meta-analysis. Sci Rep. 2017;7:11697. https://doi.org/10.1038/s41598-017-12003-4 DOI: https://doi.org/10.1038/s41598-017-12003-4

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013. DOI: https://doi.org/10.1176/appi.books.9780890425596

Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659-85. DOI: https://doi.org/10.1007/BF02172145

Schopler E, Van Bourgondien ME, Wellman GJ, Love SR. Childhood Autism Rating Scale. 2nd ed. Los Angeles, CA: Western Psychological Services; 2010.

Roid GH. Stanford-Binet Intelligence Scales: Technical Manual. 5th ed. Itasca, IL: Riverside Publishing; 2003.

Farag S. Stanford-Binet Intelligence Test: Standardized Arabic Version. Cairo, Egypt: Anglo Press; 2011.

El-Sady SR, El-Shoubary AM, Hafez NG, Abd El-Halim IA, Ewis AA, Abu-Hasseba A. A Standardization, Translation and Modification of the Preschool Language Scale-4, Doctoral Thesis of Phoniatrics. Cairo, Egypt: Faculty of Medicine, Ain Shams University; 2011.

da Costa RO, Gadelha-Filho C, da Costa A, Feitosa ML, de Araújo DP, de Lucena JD, et al. The treadmill exercise protects against dopaminergic neuron loss and brain oxidative stress in parkinsonian rats. Oxid Med Cell Longev. 2017;2017:2138169. https://doi.org/10.1155/2017/2138169 PMid:28713483 DOI: https://doi.org/10.1155/2017/2138169

Hussein J, El-Matty DA, El-Khayat Z, Abdel-Latif Y. Brain neurotransmitters in diabetic rats treated with coenzyme Q10. Int J Pharm Pharm Sci. 2012;4(4):554-6.

Nakamura K, Sekine Y, Ouchi Y, Tsujii M, Yoshikawa E, Futatsubashi M, et al. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch General Psychiatry. 2010;67(1):59-68. https://doi.org/10.1001/archgenpsychiatry.2009.137 PMid:20048223 DOI: https://doi.org/10.1001/archgenpsychiatry.2009.137

Saghazadeh A, Rezaei N. Brain-derived neurotrophic factor levels in autism: A systematic review and meta-analysis. J Autism Dev Disord. 2017;47(4):1018-29. https://doi.org/doi:10.1007/s10803-016-3024-x PMid:28138831 DOI: https://doi.org/10.1007/s10803-016-3024-x

Kesić M, Baković P, Horvatiček M, Proust B, Štefulj J, Čičin-Šain L. Constitutionally high serotonin tone favors obesity: Study on rat sublines with altered serotonin homeostasis. Front Neurosci. 2020;14:219. https://doi.org/10.3389/fnins.2020.00219 PMid:32269507 DOI: https://doi.org/10.3389/fnins.2020.00219

Pandit M, Behl T, Sachdeva M, Arora S. Role of brain derived neurotropic factor in obesity. Obesity Med. 2020;17:100189. https://doi.org/10.1016/j.obmed.2020.100189 DOI: https://doi.org/10.1016/j.obmed.2020.100189

Sandrini L, Di Minno A, Amadio P, Ieraci A, Tremoli E, Barbieri SS. Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: Systematic review of literature and meta-analysis. Int J Mol Sci. 2018;19(8):2281. https://doi.org/10.3390/ijms19082281 PMid:30081509 DOI: https://doi.org/10.3390/ijms19082281

Duff MC, Brown-Schmidt S. The hippocampus and the flexible use and processing of language. Front Hum Neurosci. 2012;6:69. https://doi.org/10.3389/fnhum.2012.00069 PMid:22493573 DOI: https://doi.org/10.3389/fnhum.2012.00069

Zou X, Zhong L, Zhu C, Zhao H, Zhao F, Cui R, et al. Role of leptin in mood disorder and neurodegenerative disease. Front Neurosci. 2019;13:378. https://doi.org/10.3389/fnins.2019.00378 PMid:31130833 DOI: https://doi.org/10.3389/fnins.2019.00378

Kelleni MT. Role of central and peripheral serotonin in obesity: What to expect in the near pharmacotherapy future? Adv Obesity Weight Manage Control. 2018;8(6):291. https://doi.org/10.15406/aowmc.2018.08.00261 DOI: https://doi.org/10.15406/aowmc.2018.08.00261

Shedlock K, Susi A, Gorman G, Hisle-Gorman E, Erdie- Lalena CR, Nylund CM. Autism spectrum disorders and metabolic complications of obesity. J Pediatr. 2016;178:183-7. https://doi.org/10.1016/j.jpeds.2016.07.055 PMid:27592097 DOI: https://doi.org/10.1016/j.jpeds.2016.07.055

Soliman AT, Yasin M, Kassem A. Leptin in pediatrics: A hormone from adipocyte that wheels several functions in children. Indian J Endocrinol Metab. 2012;16(3):S577-87. https://doi.org/10.4103/2230-8210.105575 PMid:23565493 DOI: https://doi.org/10.4103/2230-8210.105575

Farr SA, Banks WA, Morley JE. Effects of leptin on memory processing. Peptides. 2006;27(6):1420-5. https://doi.org/10.1016/j.peptides.2005.10.006 PMid:16293343 DOI: https://doi.org/10.1016/j.peptides.2005.10.006

Meneses A, Liy-Salmeron G. Serotonin and emotion, learning and memory. Rev Neurosci. 2012;23(5-6):543-53. https://doi.org/10.1515/revneuro-2012-006 PMid:2310485 DOI: https://doi.org/10.1515/revneuro-2012-0060

Downloads

Published

2021-11-10

How to Cite

1.
Abdelraouf ER, Rashad H, Kilany A, Zeidan HM, Elhadidy M, Hashish A, Nashaat NH, Metwally FM. Brain Derived Neurotrophic Factor and Serotonin Levels in Autistic Children: Do They Differ in Obesity?. Open Access Maced J Med Sci [Internet]. 2021 Nov. 10 [cited 2024 Nov. 24];9(A):959-63. Available from: https://oamjms.eu/index.php/mjms/article/view/7223