Cluster of Differentiation 274 Antigen Immunohistochemical Expression in Tumor and Peri-tumor Cells of Hodgkin and Non-Hodgkin Lymphoma and Clinicopathological Relation (Single-center Study)
DOI:
https://doi.org/10.3889/oamjms.2021.7227Keywords:
Cluster of differentiation 274 antigen, Classic Hodgkin lymphoma, Diffuse large B cell lymphoma, Immunohistochemistry, Non-Hodgkin lymphoma, Programmed cell death protein 1Abstract
BACKGROUND: Cluster of differentiation 274 (CD274) antigen has been investigated in tumors to evaluate its regulation and effect as a predictive of targeted therapy. Its expression and effect in lymphoma have raised interest recently. However, results were mixed and showed wide variations.
AIM: This study aims to explore and compare CD274 antigen immunohistochemical expression in tumor and peri-tumor cells of classic Hodgkin lymphoma (HL) and diffuse large B cells non-HL (NHL) and its relation with clinicopathological criteria.
METHODS: This work was carried out on 78 cases of lymph node excision biopsy (48 HL and 30 NHL). Prepared sections were applied for immunohistochemistry using CD274 monoclonal rabbit anti-human (programmed cell death protein 1 [PD-L1] ZR3-ASR, a Sigma Aldrich company). Assessment of CD274 antigen in tumor cells was considered positive if detected in >10% (membranous staining with cytoplasmic accentuation). Peri-tumor cells were scored as: 0, no positive cells/high-power field (HPF); 1, <10 positive cells/HPF; 2, 10–30 positive cells/HPF; 3, >30 positive cells/HPF.
RESULTS: CD274 antigen was expressed in 53.8% of total lymphoma cases with significantly more expression of CD274 antigen in HL than NHL (66.7% vs. 33.3%). Classic HL showed significantly higher expression of CD274 antigen in tumor and peri-tumor cells and significant association with elevated erythrocyte sedimentation rate and lactate dehydrogenase and male gender.
INTERPRETATION AND CONCLUSION: There is a more frequent and significant expression of CD274 antigen in classic HL than NHL cases in tumor and peri-tumor cells and a significant association with bad prognostic criteria in classic HL. High expression of CD274 antigen in classic HL proposes its potential use as a marker, especially for prognostic indication.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887-95. PMid:1396582 DOI: https://doi.org/10.1002/j.1460-2075.1992.tb05481.x
Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014;2(4):361-70. http://doi.org/10.1158/2326-6066.CIR-13-0127 PMid:24764583 DOI: https://doi.org/10.1158/2326-6066.CIR-13-0127
Faraj SF, Munari E, Guner G, Taube J, Anders R, Hicks J, et al. Assessment of tumoral PD-L1 expression and intratumoral CD8+ T cells in urothelial carcinoma. Urology. 2015;85(3):703. e1-6. http://doi.org/10.1016/j.urology.2014.10.020 PMid:25733301 DOI: https://doi.org/10.1016/j.urology.2014.10.020
Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255-65. DOI: https://doi.org/10.1016/S0140-6736(16)32517-X
Herbst RS, Soria J, Kowanetz M, Fine GD, Hamid O, Kohrt HE, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A. Nature. 2014;515(7528):563-7. http://doi.org/10.1038/nature14011 Mid:25428504 DOI: https://doi.org/10.1038/nature14011
Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847-56. http://doi.org/10.1158/1535-7163.MCT-14-0983 Mid:25695955 DOI: https://doi.org/10.1158/1535-7163.MCT-14-0983
Miranda-Filho A, Piñeros M, Znaor A, Marcos-Gragera R, Steliarova-Foucher E, Bray F. Global patterns and trends in the incidence of non-Hodgkin lymphoma. Cancer Causes Control. 2019;30(5):489-99. http://doi.org/10.1007/s10552-019-01155-5 PMid:30895415 DOI: https://doi.org/10.1007/s10552-019-01155-5
Li S, Young KH, Medeiros LJ. Diffuse large B-cell lymphoma. Pathology. 2018;50(1):74-87. http://doi.org/10.1016/j.pathol.2017.09.006 PMid:29167021 DOI: https://doi.org/10.1016/j.pathol.2017.09.006
Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275-82. http://doi.org/10.1182/blood-2003-05-1545 PMid:14504078 DOI: https://doi.org/10.1182/blood-2003-05-1545
Chan A, Dogan A. Prognostic and predictive biomarkers in diffuse large B-cell lymphoma. Surg Pathol Clin. 2019;12(3):699-707. http://doi.org/10.1016/j.path.2019.03.012 PMid:31352982 DOI: https://doi.org/10.1016/j.path.2019.03.012
Zhou L, Deng Y, Li N, Zheng Y, Tian T, Zhai Z, et al. Global, regional, and national burden of Hodgkin lymphoma from 1990 to 2017: Estimates from the 2017 global burden of disease study. J Hematol Oncol. 2019;12(1):107. http://doi.org/10.1186/s13045-019-0799-1 PMid:31640759 DOI: https://doi.org/10.1186/s13045-019-0799-1
World Health Organization. IARC, Egypt, Globocan 2020, (n.d.). Available from: https://gco.iarc.fr/today/data/factsheets/populations/818-egypt-fact-sheets.pdf [Last accessed on 2021 May 22].
Ansell SM. Hodgkin lymphoma: 2018 update on diagnosis, risk-stratification, and management. Am J Hematol. 2018;93(5):704-15. http://doi.org/10.1002/ajh.25071 PMid:29634090 DOI: https://doi.org/10.1002/ajh.25071
Li Y, Wang J, Li C, Ke XY. Contribution of PD-L1 to oncogenesis of lymphoma and its RNAi-based targeting therapy. Leuk Lymphoma. 2012;53(10):2015-23. http://doi.org/10.3109/10428194.2012.673228 PMid:22462616 DOI: https://doi.org/10.3109/10428194.2012.673228
Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2014;19(13):3462-73. http://doi.org/10.1158/1078-0432.CCR-13-0855 PMid:23674495 DOI: https://doi.org/10.1158/1078-0432.CCR-13-0855
Kiyasu J, Miyoshi H, Hirata A, Arakawa F, Ichikawa A, Niino D, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126(19):2193-201. http://doi.org/10.1182/blood-2015-02-629600 PMid:26239088 DOI: https://doi.org/10.1182/blood-2015-02-629600
Menter T, Bodmer-Haecki A, Dirnhofer S, Tzankov A. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas. Hum Pathol. 2016;54:17-24. http://doi.org/10.1016/j.humpath.2016.03.005 PMid:27045512 DOI: https://doi.org/10.1016/j.humpath.2016.03.005
Glinsmann-Gibson B, Wisner L, Stanton M, Larsen B, Rimsza L, Maguire A. Recommendations for tissue microarray construction and quality assurance. Appl Immunohistochem Mol Morphol. 2019;28(4):325-330. http://doi.org/10.1097/PAI.0000000000000739 PMid:31033496 DOI: https://doi.org/10.1097/PAI.0000000000000739
Kwon D, Kim S, Kim PJ, Go H, Nam SJ, Paik JH, et al. Clinicopathological analysis of programmed cell death 1 and programmed cell death ligand 1 expression in the tumour microenvironments of diffuse large B cell lymphomas. Histopathology. 2016;68(7):1079-89. http://doi.org/10.1111/his.12882 PMid:26426431 DOI: https://doi.org/10.1111/his.12882
Caponetti G, Bagg A. Demystifying the diagnosis and classification of lymphoma: A hematologist/oncologist’s guide to the hematopathologist’s galaxy. J Community Support Oncol. 2017;15(1):43-8.
Bröckelmann PJ, Eichenauer DA, Jakob T, Follmann M, Engert A, Skoetz N. Hodgkin lymphoma in adults diagnosis, treatment, and follow-up. Dtsch Arztebl Int. 2018;115(31-32):535-40. http://doi.org/10.3238/arztebl.2018.0535 PMid:30149835 DOI: https://doi.org/10.3238/arztebl.2018.0535
Herzog CM, Dey S, Hablas A, Khaled HM, Seifeldin IA, Ramadan M, et al. Geographic distribution of hematopoietic cancers in the nile delta of Egypt. Ann Oncol. 2012;23(10):2748-55. http://doi.org/10.1093/annonc/mds079 PMid:22553197 DOI: https://doi.org/10.1093/annonc/mds079
Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019;12(1):92. http://doi.org/10.1186/s13045-019-0779-5 PMid:31488176 DOI: https://doi.org/10.1186/s13045-019-0779-5
Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4. http://doi.org/10.1126/scitranslmed.aad7118 PMid:26936508 DOI: https://doi.org/10.1126/scitranslmed.aad7118
Ghosh C, Luong G, Sun Y. A snapshot of the PD-1/PD-L1 pathway. J Cancer. 2021;12(9):2735-46. http://doi.org/10.7150/jca.57334 PMid:33854633 DOI: https://doi.org/10.7150/jca.57334
Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Bin CY, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large b-cell lymphoma: Results of an international phase II trial. J Clin Oncol. 2013;31(33):4199-206. http://doi.org/10.1200/JCO.2012.48.3685 PMid:24127452 DOI: https://doi.org/10.1200/JCO.2012.48.3685
Panjwani PK, Charu V, DeLisser M, Molina-Kirsch H, Natkunam Y, Zhao S. Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Hum Pathol. 2018;71:91-9. http://doi.org/10.1016/j.humpath.2017.10.029 PMid:29122656 DOI: https://doi.org/10.1016/j.humpath.2017.10.029
Vranic S, Ghosh N, Kimbrough J, Bilalovic N, Bender R, Arguello D, et al. PD-L1 status in refractory lymphomas. PLoS One. 2016;11(11):e0166266. http://doi.org/10.1371/journal.pone.0166266 PMid:27861596 DOI: https://doi.org/10.1371/journal.pone.0166266
Xing W, Dresser K, Zhang R, Evens AM, Yu H, Woda BA, et al. PD-L1 expression in EBV-negative diffuse large B-cell lymphoma: Clinicopathologic features and prognostic implications. Oncotarget. 2016;7(37):59976-86. http://doi.org/10.18632/oncotarget.11045 PMid:27527850 DOI: https://doi.org/10.18632/oncotarget.11045
Taylor JG, Clear AJ, Truelove E, Calaminici M, Gribben JG. Beyond exhaustion: The PDL1-PD1 axis shapes the classical hodgkin lymphoma microenvironment. Blood. 2019;134(Suppl 1):658-8. DOI: https://doi.org/10.1182/blood-2019-125247
Gravelle P, Burroni B, Péricart S, Rossi C, Bezombes C, Tosolini M, et al. Mechanisms of PD-1/PD-L1 expression and prognostic relevance in non-Hodgkin lymphoma: A summary of immunohistochemical studies. Oncotarget. 2017;8(27):44960-75. http://doi.org/10.18632/oncotarget.16680 PMid:28402953 DOI: https://doi.org/10.18632/oncotarget.16680
Wei Y, Xiao X, Lao XM, Zheng L, Kuang DM. Immune landscape and therapeutic strategies: New insights into PD-L1 in tumors. Cell Mol Life Sci. 2021;78(3):867-87. http://doi.org/10.1007/s00018-020-03637-1 Mid:32940722 DOI: https://doi.org/10.1007/s00018-020-03637-1
Ozuah NW, LaCasce AS. Clinical evaluation and management of hodgkin lymphoma. In: Concise Guide to Hematology. Berlin, Heidelberg: Springer International Publishing; 2019. p. 371-8. DOI: https://doi.org/10.1007/978-3-319-97873-4_30
Downloads
Published
How to Cite
License
Copyright (c) 2021 Walaa Ghanam, Shaimaa M. M. Bebars (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0