Chartolepis intermedia Boiss. and Centaurea ruthenica Lam. – New Medicina Plants Containing Pharmacologically Active Compounds

Authors

  • Gaisha Mukhametzhanova JSC International Research and Production Holding “Phytochemistry”, Karaganda, Kazakhstan
  • Gulzina Asanova JSC International Research and Production Holding “Phytochemistry”, Karaganda, Kazakhstan
  • Gulimzhan S. Adekenova JSC International Research and Production Holding “Phytochemistry”, Karaganda, Kazakhstan
  • Balzhan Medeubayeva JSC International Research and Production Holding “Phytochemistry”, Karaganda, Kazakhstan
  • Anarkul Kishkentayeva JSC International Research and Production Holding “Phytochemistry”, Karaganda, Kazakhstan
  • Sergazy Adekenov JSC International Research and Production Holding “Phytochemistry”, Karaganda, Kazakhstan

DOI:

https://doi.org/10.3889/oamjms.2022.7232

Keywords:

Chartolepis intermedia Boiss, Centaurea ruthenica Lam, Pharmacognosy, Cynaropicrin, Antitumor, Antiparasitic, Hypolipidemic, Antimicrobial activity

Abstract

BACKGROUND: Chartolepis intermedia Boiss. and Centaurea ruthenica Lam. are new medicinal plants containing pharmacologically active sesquiterpene lactones grossheimin and cynaropicrin. The article discusses the methods for the isolation of grossheimin and cynaropicrin and presents the results of studying the pharmacological activity of the isolated sesquiterpene lactones.

AIM: The aim of this work was chemical, morphological, and anatomical study of Ch. intermedia Boiss. and C. ruthenica Lam., determination of pharmacological activity to substantiate the possibility of using these plants as medicinal raw materials.

METHODS: The antitumor activity of grossheimin was studied in white outbred rats and mice in 12 strains of transplanted tumors. The antiparasitic activity of grossheimin and cynaropicrin was studied during replication of models of experimental opisthorchiasis on male golden hamsters (Mesocricetus auratus) of the SPF category. Experiments in vivo were carried out on pastoral dogs infested with various types of helminths. The hypolipidemic activity of grossheimin was studied in experimental rats with a single intragastric administration of ethanol, causing acute hyperlipidemia. The antimicrobial activity of cynarpicrin was determined in relation to test strains of Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and Gram-negative strains of Escherichia coli and Pseudomonas aeruginosa by the method of diffusion in agar.

RESULTS: Characteristic diagnostic features for Ch. intermedia Boiss. and C. ruthenica Lam. were revealed, which make it possible to diagnose and standardize the medicinal plants under study. Pharmacological studies have shown that grossheimin and cynaropicrin have antitumor, antiparasitic, hypolipidemic, and antimicrobial activity. Grossheimin significantly inhibits the growth of sarcoma 180, Pliss lymphosarcoma, and Ehrlich’s solid tumor. On the model of acute hyperlipidemia caused by the introduction of ethanol, grossheimin had a hypolipidemic effect, reducing the serum levels of triacylglycerides, total cholesterol, and low-density lipoprotein cholesterol. Under in vitro conditions, grossheimin and cynaropicrin exhibited anthelmintic action against Opisthorchis felineus worms, and under in vivo conditions, cynaropicrin was up to 100% effective against tapeworm infections (Taenia sp.).

CONCLUSION: It was determined that the quantitative yield of sesquiterpene lactones is provided by extraction of plant raw materials with an ethanol: water (1:1) mixture under the action of ultrasound. Characteristic diagnostic features for C. intermedia Boiss. and C. ruthenica Lam. were revealed, which make it possible to diagnose and standardize the medicinal plants under study.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Plant Resources of the USSR. Flowering Plants, their Chemical Composition, Use. Family Asteraceae Sokolov P.D. St. Petersburg, Science; 1993. p. 350.

Pavlov NV. Flora of Kazakhstan. Vol. 9. Alma-Ata: Science; 1966. p. 420.

Bruno М, Bancheva S, Rosselli S, Maggio A. Sesquiterpenoids in subtribe Centaureinae (Cass.) Dumort (tribe Cardueae, Asteraceae): Distribution, 13C NMR spectral data and biological properties. Phytochemistry. 2013;95:13-95. https://doi.org/10.1016/j.phytochem.2013.07.002. PMid:23948259 DOI: https://doi.org/10.1016/j.phytochem.2013.07.002

Cherepanov SK. Chartolepis Genus-Chartolepis Cass Flora of USSR. Vol. 28. Moscow: Science; 1963. p. 335-40.

Nowak G, Drożdż B, Holub M. Sesquiterpene lactones. 32nd Guaianolides in species from the genus Chartolepis Cass. Acta Soc Bot Pol. 1986;55(2):233-8. https://doi.org/10.5586/asbp.1986.052 DOI: https://doi.org/10.5586/asbp.1986.023

Rybalko KS, Bankovsky AI, Kibalchich PN. Grossheimin is a new sesquiterpene lactone from Grossheimia macrocephala (Muss.- Puschk.) Sosn. et Takht. J Gen Chem. 1964;34(4):580-4.

Fraga BM. Natural sesquiterpenoids. J Nat Prod Reports. 1985;4:147-61. DOI: https://doi.org/10.1039/np9850200147

Sulsen V, Martino V. Sesquiterpene Lactones. Advances in their Chemistry and Biological Aspects. Cham, Switzerland: Springer International Publishing AG; 2018. p. 381.

Rybalko KS. Natural Sesquiterpene Lactones. Moscow: Medicine; 1978. p. 320.

Fisсher NM, Olivier TJ, Fisсher HD. The biogenesis and chemistry of sesquiterpene lactones. Fortschr Chem Org Nat. 1979;38:47-390. DOI: https://doi.org/10.1007/978-3-7091-8548-3_2

Seaman FC. Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev. 1982;48(2):121-594. https://doi.org/10.1007/BF02919190 DOI: https://doi.org/10.1007/BF02919190

Adekenov SM, Kagarlitsky AD, Kupriyanov AN. Sesquiterpene lactones of Central Kazakhstan, Alma Ata: Science; 1987. p. 240.

Samek Z, Holub M. Sesquiterpene lactones of Cynara scolymus L. Species. Tetrahedron Lett. 1971;50:4775-8. DOI: https://doi.org/10.1016/S0040-4039(01)97612-9

Samek Z, Holub M, Vokáč K, Drożdż B, Jommi G, Gariboldi P, et al. On terpenes. CCXIX. The structure of grosheimin. Coll Czec Chem Commun. 1972;37(8):2611-29. https://doi.org/10.1135/cccc19722611 DOI: https://doi.org/10.1135/cccc19722611

Gonzales AG, Marrero ВG, Breton JL. de las Compuestas XT. Estructura de la grosshemina, lipidiol, e isolipidiol. Lactonas de la a lippi DC Y SU possible estereoqumica. An Quim. 1970;66:799-813.

Rustaiyan A, Niknejad A, Zdero C, Bohlmann F. A guaianolide from Centaurea behen. Phytochemistry. 1981;20(10):2427-9. https://doi.org/10.1016/S0031-9422(00)82682-5 DOI: https://doi.org/10.1016/S0031-9422(00)82682-5

Barbetti P, Fardella G, Chiappini I, Scarcia V, Furlani Candiani A. New cytotoxic guaianolides and derivatives from Grosheimia macrocephala. Farmaco Ed Sci. 1985;40(10):755-69. https://doi.org/10.1002/chin.198612322 DOI: https://doi.org/10.1002/chin.198612322

Medeubaeva B, Adekenov SM. Cynaropicrin as a chemotaxonomic marker of plants of the genus Saussurea DC. In: Collection: Modern Trends in the Development of Health-preserving Technologies. Moscow: FSBSI VILAR; 2021. p. 352-6.

Zhang GG, Zheng YG. Gong Saussurea involucrata. Urumqi: Xinjiang; 2013. p. 213.

Kaminsky IP. Sesquiterpene lactones of Centaurea scabiosa L. Chemical Study and Development of Analytical Methods: Abstract of Thesis; 2011. p. 22.

Youssef D, Frahm AW. Constituents of the Egyptian Centaurea scoparia II Guaianolides of the aerial parts. Planta Med. 1994;60(6):572-5. https://doi.org/10.1055/s-2006-959575. PMid:17236083 DOI: https://doi.org/10.1055/s-2006-959575

Ohno N, Hirai H, Yoshioka Y. Cynaropicrin: A sesquiterpene lactone from Centaurea americana. Phytochemistry. 1973;12:221. https://doi.org/10.1016/s0031-9422(00)84659-2 DOI: https://doi.org/10.1016/S0031-9422(00)84659-2

Cho JY, Kim AR, Jung JH, Chun T, Rhee MN, Yoo ES. Cytotoxic and proapoptotic activities of cynaropicrin, a sesquiterpene lactone, on the viability of leukocyte cancer cell lines. Eur J Pharmacol. 2004;492(2-3):85-94. https://doi.org/10.1016/j.ejphar.2004.03.027 PMid:15178350 DOI: https://doi.org/10.1016/j.ejphar.2004.03.027

Emerdorfer F, Emerdorfer F, Bellato F, Noldin VF, Cechinel- Filho V, Yunes RA, et al. Antispasmodic activity of fractions and cynaropicrin from Cynara scolymus on guinea-pig ileum. Biol Pharm Bull. 2005;25(5):902-4. https://doi.org/10.1248/bpb.28.902 PMid:15863902 DOI: https://doi.org/10.1248/bpb.28.902

Adekenov SM, Kupriyanov AM, Aituganov KA. Stocks of raw materials of Chartolepis intermedia Boiss., experience of cultivation and dynamics of localization of sesquiterpene lactone grossheimin. Plant Resour. 1991;3:67-73.

Vekhov VN, Lotova LI, Filin VR. Practical Course on the Anatomy and Morphology of Higher Plants. Moscow: MSU; 1980. p. 560.

Pakharukova MY, Shilov AG, Pirozhkova DS, Katokhin AV, Mordvinov VA. The first comprehensive study of praziquantel effects in vivo and in vitro on European liver fluke Opisthorchis felineus (Trematoda). Int J Antimicrob Agents. 2015;46(1):94-100. https://doi.org/10.1016/j.ijantimicag.2015.02.012. PMid:25862308 DOI: https://doi.org/10.1016/j.ijantimicag.2015.02.012

Khabriev RU. Guidelines for Experimental (Preclinical) Study of New Pharmacological Substances. Under the General Editorship of Corresponding Member of the Russian Academy of Medical Sciences. 2nd ed. Moscow: OJSC Publishing House Medicine; 2005. p. 832.

Adekenov SM, Kishkentayeva AS, Atazhanova GA. Patent of RK 33713 Dated June 18, 2019. Extraction Method of Chartolepis intermedia Boiss; 2019.

Downloads

Published

2022-01-13

How to Cite

1.
Mukhametzhanova G, Asanova G, Adekenova GS, Medeubayeva B, Kishkentayeva A, Adekenov S. Chartolepis intermedia Boiss. and Centaurea ruthenica Lam. – New Medicina Plants Containing Pharmacologically Active Compounds. Open Access Maced J Med Sci [Internet]. 2022 Jan. 13 [cited 2024 Nov. 21];10(A):56-64. Available from: https://oamjms.eu/index.php/mjms/article/view/7232