The Effect of Gembili Starch (Dioscorea esculenta) and Eubacterium rectal Supplementation on Skeletal Muscle Peroxisome Proliferator-Activated Receptor γ Coactivator 1α (Pgc-1α) Expression in Diabetic Mice Models

Authors

  • Tri Setyawati Department of Biochemistry, Faculty of Medicine, Universitas Tadulako, Indonesia https://orcid.org/0000-0001-5754-2087
  • Rio Jati Kusuma Department of Health Nutrition, Faculty of Medicine, Universitas Gadjah Mada, Indonesia
  • Harry Freitag Luglio Department of Health Nutrition, Faculty of Medicine, Universitas Gadjah Mada, Indonesia
  • Neni Oktiyani Department of Biochemistry, Poltekkes, Banjarmasin, Indonesia
  • Sunarti Sunarti Department of Biochemistry, Faculty of Medicine, Universitas Gadjah Mada, Indonesia
  • Rosmala Nur Department of Public Health, Faculty of Public Health, Tadulako University, Palu, Indonesia
  • Syaiful Hendra Department of Information Technology, Faculty of Engineering, Tadulako University, Palu, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.7415

Keywords:

Gembili, Eubacterium rectal, PGC-1α, Glucose tolerance, Diabetes mellitus

Abstract

BACKGROUND: Gembili or Dioscorea esculenta is a local food that is produced by several areas in Indonesia. Few studies have reported its health benefits for diabetes mellitus but a little is understood about its mechanism of action. PGC-1α is a transcriptional coactivator for genes that involved in energy metabolism and increased expression of this gene has previously been associated with improved insulin sensitivity.

AIM: The objective of this study was to investigate the effect of Gembili starch and Gembili starch with butirogenic bacteria Eubacterium rectal on PGC-1α expression in skeletal muscle of diabetic mice.

MATERIALS AND METHODS: Three months old male diabetic Wistar mice were divided into groups based on dietary supplement: Gembili starch only; Gembili starch with E. rectal; and E. rectal only. Positive (diabetic mice) and negative (non-diabetic) control groups were used in this study. After 4 weeks of supplementation, mice were sacrificed and muscle tissue was taken from musculus vastus latissimus. Plasma blood glucose was measured before and after intervention. PGC-1α expression was measured with immunohistochemistry and quantified by dividing cells that produce PGC-1α with total cells.

RESULTS: Plasma blood glucose was reduced after invention in group that received Gembili starch only (p < 0.001); Gembili starch with E. rectal (p < 0.001); and E. rectal only (p < 0.001). The protein expression of PGC-1α in diabetic mice receiving Gembili starch only was significantly higher compared to control (p < 0.05).

CONCLUSION: This study shown that Gembili starch supplementation was able to improve glucose control in diabetic mice and this effect was obtained perhaps through PGC-1α activation. Further study is needed to investigate the effect of Gembili starch supplementation on fat metabolism.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Soumaya K. Molecular mechanisms of insulin resistance in diabetes. Adv Exp Med Biol. 2012;771:240-51. http://doi.org/10.1007/978-1-4614-5441-0_19 PMid:23393683 DOI: https://doi.org/10.1007/978-1-4614-5441-0_19

International Diabetes Federation. IDF Diabetes Atlas. 7th ed. International Diabetes Federation; 2015.

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of Type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. http://doi.org/10.1038/nrendo.2017.151 PMid:29219149 DOI: https://doi.org/10.1038/nrendo.2017.151

Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239-51. http://doi.org/10.1016/S0140-6736(17)30058-2 PMid:28190580 DOI: https://doi.org/10.1016/S0140-6736(17)30058-2

DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: A common feature of Type 2 (noninsulin-dependent) and Type 1 (insuin-dependent) diabetes mellitus. Diabetologia. 1982;23(4):313-9. http://doi.org/10.1007/BF00253736 Mid:6754515 DOI: https://doi.org/10.1007/BF00253736

Canto C, Auwerx J. PGC-1 alpha SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009;20:98-105. http://doi.org/10.1097/MOL.0b013e328328d0a4 PMid:19276888 DOI: https://doi.org/10.1097/MOL.0b013e328328d0a4

Attie AD, Kendziorski CM. PGC-1 alpha at the crossroads of Type 2 diabetes. Nat Genet. 2003;34(3):244-5. http://doi.org/10.1038/ng0703-244 Mid:12833045 DOI: https://doi.org/10.1038/ng0703-244

Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidatve metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466-71. http://doi.org/10.1073/pnas.1032913100 PMid:12832613 DOI: https://doi.org/10.1073/pnas.1032913100

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1 alpha-responsive genes involved in oxidative phosphorilation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-73. http://doi.org/10.1038/ng1180 PMid:12808457 DOI: https://doi.org/10.1038/ng1180

Wende A, Schaeffer PJ, Parker GJ, Zechner C, Han DH, Chen MM, et al. A role for the transcriptional coactivator PGC-1 alpha in muscle refueling. J Biolchem. 2007;282(50):36642-51. http://doi.org/10.1074/jbc.M707006200 PMid:17932032 DOI: https://doi.org/10.1074/jbc.M707006200

Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, et al. Erralpha and Gabpa/b speciify PGC-1 alpha-dependent oxidative phosphorilation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A. 2004;101:6570-5. http://doi.org/10.1073/pnas.0401401101 PMid:15100410 DOI: https://doi.org/10.1073/pnas.0401401101

Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, et al. Mechanism controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115-24. http://doi.org/10.1016/S0092-8674(00)80611-X PMid:10412986 DOI: https://doi.org/10.1016/S0092-8674(00)80611-X

St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivator-1- alpha and 1beta (PGC-1alpha and PGC 1beta) in muscle cells. J Biol Chem. 2003;278(29):26597-603. http://doi.org/10.1074/jbc.M301850200 PMid:12734177 DOI: https://doi.org/10.1074/jbc.M301850200

Richardson DK, Kashyap S, Bajaj M, Cusi K, Mandarino SJ, Finlayson J, et al. Lipid infusion decreases the expression of nuclear encoded mithocondrial genes and increases the expression od extracellular matrix genes in human skeletal muscle. J Biol Chem. 2005;280(11):10290-7. http://doi.org/10.1074/jbc.M408985200 PMid:15598661 DOI: https://doi.org/10.1074/jbc.M408985200

Liu YW, Shang HF, Wang CK, Hsu FL, Hou WC. Immunomodulatory activity of dioscorin, the storage protein of yam (Dioscorea alata cv. Tainong no.1) tuber. Food Chem Toxicol. 2007;45(11):2312-8. http://doi.org/10.1016/j.fct.2007.06.009 PMid:17637490 DOI: https://doi.org/10.1016/j.fct.2007.06.009

Lunn J, Buttriss JL. Carbohydrates and dietary fbre. Nutr Bull. 2007;32:21-64. DOI: https://doi.org/10.1111/j.1467-3010.2007.00616.x

Harijono, Estiasih T, Sunarharum WB, Hartono MD. Hypoglycemic effect of biscuits containing water-soluble polysaccharides from wild yam (Dioscorea hispida Dennts) or lesser yam (Dioscorea esculenta) tubers and alginate. Int Food Res J. 2013;20(5):2279-85. DOI: https://doi.org/10.19026/ajfst.5.3108

Estiasih HT, Sunarharum WB, Suwita IK. Efek hipoglikemik polisakarida larut air gembili (Dioscorea esculenta) extracted by various methods. Indo Food Technol J. 2012;23(1):1-8.

Theuwissen E, Mensink RP. Water-soluble dietary fibers and cardiovascular disease. Physiol Behav. 2008;94(2):285-92. http://doi.org/10.1016/j.physbeh.2008.01.001 PMid:18302966 DOI: https://doi.org/10.1016/j.physbeh.2008.01.001

Sakakibara S, Yamauchi T, Oshima Y, Tsukamoto Y, Kadowaki T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem Biophys Res Commun. 2006;344(2):597-604. http://doi.org/10.1016/j.bbrc.2006.03.176 PMid:16630552 DOI: https://doi.org/10.1016/j.bbrc.2006.03.176

Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74(1):13-22. PMid:25268552 DOI: https://doi.org/10.1017/S0029665114001463

Hartstra AV, Bouter KE, Backhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and Type 2 diabetes. Diabetes Care. 2015;38(1):159-65. http://doi.org/10.2337/dc14-0769 PMid:25538312 DOI: https://doi.org/10.2337/dc14-0769

Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. The gut microbiome modulates colon tumorigenesis. mBio. 2013;4(6):e00692. http://doi.org/10.1128/mBio.00692-13 PMid:24194538 DOI: https://doi.org/10.1128/mBio.00692-13

Sheridan PO, Martin JC, Lawley TD, Hillary PB, Harris HM, Bernalier-Donadille A, et al. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic firmicutes. Microb Genom. 2016;2(2):e000043. http://doi.org/10.1099/mgen.0.000043 Mid:28348841 DOI: https://doi.org/10.1099/mgen.0.000043

Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661-72. http://doi.org/10.1038/nrmicro3344 Mid:25198138 DOI: https://doi.org/10.1038/nrmicro3344

Mensink M, Hesselink MK, Russell AP, Schaart G, Sels JP, Schrauwen P. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/ delta gene expression upon rosiglizatone treatment in obese patients with Type 2 diabetes mellitus. Int J Obes (Lond). 2007;31(8):1302-10. http://doi.org/10.1038/sj.ijo.0803567 PMid:17310221 DOI: https://doi.org/10.1038/sj.ijo.0803567

Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC-1α. Int J Obes. 2005;29(Suppl 1):S5-9. http://doi.org/10.1038/sj.ijo.0802905 PMid:15711583 DOI: https://doi.org/10.1038/sj.ijo.0802905

Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413(6852):3179-183. http://doi.org/10.1038/35093131 PMid:11557984 DOI: https://doi.org/10.1038/35093131

Saleh N, Elayan HE, Zihlif M. The effect of salbutamol on PGC-1α _and GLUT4 mRNA expression in the liver and muscle of elderly diabetic mice. Acta Endocrinol (Buchar). 2018;14(2):184-91. http://doi.org/10.4183/aeb.2018.184 PMid:31149256 DOI: https://doi.org/10.4183/aeb.2018.184

Botta A, Laher I, Beam J, Decoffe D, Brown K, Halder S, et al. Short term exercise induces PGC-1α, ameliorates inflamation and increases mitochondrial membrane proteins but fail to increase respiratory enzymes in aging diabetic hearts. PLoS One. 2013;8(8):e70248. Mid:23936397 DOI: https://doi.org/10.1371/journal.pone.0070248

Handschin C, Spiegelman BM. The role of exercise and PGC-1 alpha in inflammation and chronic disease. Nature. 2008;454(7203):463-9. http://doi.org/10.1038/nature07206 PMid:18650917 DOI: https://doi.org/10.1038/nature07206

Downloads

Published

2021-11-21

How to Cite

1.
Setyawati T, Jati Kusuma R, Freitag Luglio H, Oktiyani N, Sunarti S, Nur R, Hendra S. The Effect of Gembili Starch (Dioscorea esculenta) and Eubacterium rectal Supplementation on Skeletal Muscle Peroxisome Proliferator-Activated Receptor γ Coactivator 1α (Pgc-1α) Expression in Diabetic Mice Models. Open Access Maced J Med Sci [Internet]. 2021 Nov. 21 [cited 2024 Nov. 21];9(A):1061-7. Available from: https://oamjms.eu/index.php/mjms/article/view/7415