Diamond Concept as Principle for the Development of Spinal Cord Scaffold: A Literature Review

Authors

  • Yudha M. Sakti Department of Surgery, Division of Orthopedics and Traumatology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
  • Rusdy Ghazali Malueka Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
  • Ery Kus Dwianingsih Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia https://orcid.org/0000-0002-0484-7773
  • Ahmad Kusumaatmaja Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Akbar Mafaza Department of Surgery, Division of Orthopedics and Traumatology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
  • Deas Makalingga Emiri Bachelor Student, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia https://orcid.org/0000-0002-4853-2415

DOI:

https://doi.org/10.3889/oamjms.2021.7438

Keywords:

Spinal cord injury, Diamond concept, Neuroregeneration, Scaffolding

Abstract

INTRODUCTION: Spinal cord injury (SCI) has been bringing detrimental impacts on the affected individuals. However, not only that, it also brings a tremendous effect on the socioeconomic and health-care system. Treatment regimen and strategy for SCI patient have been under further research.

DISCUSSION: The main obstacles of regeneration on neuronal structure are the neuroinflammatory process and poor debris clearance, causing a longer healing process and an extensive inflammation process due to this particular inflammatory process. To resolve all of the mentioned significant issues in SCIs neuronal regeneration, a comprehensive model is necessary to analyze each step of progressive condition in SCI. In this review, we would like to redefine a comprehensive concept of the “Diamond Concept” from previously used in fracture management to SCI management, which consists of cellular platform, cellular inductivity, cellular conductivity, and material integrity. The scaffolding treatment strategy for SCI has been widely proposed due to its flexibility. It enables the physician to combine another treatment method such as neuroprotective or neuroregenerative or both in one intervention.

CONCLUSION: Diamond concept perspective in the implementation of scaffolding could be advantageous to increase the outcome of SCI treatment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;10:282. http://doi.org/10.3389/fneur.2019.00282/full PMid:30967837 DOI: https://doi.org/10.3389/fneur.2019.00282

Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, et al. Acute spinal cord injury, Part I: Pathophysiologic mechanisms. Clin Neuropharmacol. 2001;24(5):254-64. http://doi.org/10.1097/00002826-200109000-00002 PMid:11586110 DOI: https://doi.org/10.1097/00002826-200109000-00002

Thompson C, Mutch J, Parent S, Mac-Thiong JM. The changing demographics of traumatic spinal cord injury: An 11-year study of 831 patients. J Spinal Cord Med. 2015;38(2):214-23. http://doi.org/10.1179/2045772314Y.0000000233 PMid:25096709 DOI: https://doi.org/10.1179/2045772314Y.0000000233

Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the united states: Stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pa. Arch Phys Med Rehabil. 2014;95(5):986-95. e1. http://doi.org/10.1016/j.apmr.2013.10.032 PMid:24462839 DOI: https://doi.org/10.1016/j.apmr.2013.10.032

Fehlings M, Singh A, Tetreault L, Kalsi-Ryan S, Nouri A. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309-31. http://doi.org/10.2147/CLEP.S68889 PMid:25278785 DOI: https://doi.org/10.2147/CLEP.S68889

Varma AK, Das A, Wallace G, Barry J, Vertegel AA, Ray SK, et al. Spinal cord injury: A review of current therapy, future treatments, and basic science frontiers. Neurochem Res. 2013;38(5):895-905. http://doi.org/10.1007/s11064-013-0991-6 PMid:23462880 DOI: https://doi.org/10.1007/s11064-013-0991-6

Alexander JK, Popovich PG. Neuroinflammation in Spinal Cord Injury: Therapeutic Targets for Neuroprotection and Regeneration; 2009. p. 125-37. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079612309175088. [Last accessed 2021 Aug 15]. DOI: https://doi.org/10.1016/S0079-6123(09)17508-8

Andrzejowski P, Giannoudis PV. The “diamond concept” for long bone non-union management. J Orthop Traumatol. 2019;20(1):21. http://doi.org/10.1186/s10195-019-0528-0 PMid:30976944 DOI: https://doi.org/10.1186/s10195-019-0528-0

Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: The diamond concept. Injury. 2007;38(Suppl 4):S3-6. http://doi.org/10.1016/s0020-1383(08)70003-2 PMid:18224731 DOI: https://doi.org/10.1016/S0020-1383(08)70003-2

Mironov AA, Beznoussenko GV. Models of intracellular transport: Pros and cons. Front Cell Dev Biol. 2019;7:146. http://doi.org/10.3389/fcell.2019.00146 PMid:31440506 DOI: https://doi.org/10.3389/fcell.2019.00146

Dias C, Nylandsted J. Plasma membrane integrity in health and disease: Significance and therapeutic potential. Cell Discov. 2021;7(1):4. http://doi.org/10.1038/s41421-020-00233-2 PMid:33462191 DOI: https://doi.org/10.1038/s41421-020-00233-2

Sherwood L. Human Physiology: From Cells to Systems. 8th ed. Belmont, CA : Brooks/Cole, Cengage Learning; 2013.

Aloe L, Rocco M, Bianchi P, Manni L. Nerve growth factor: From the early discoveries to the potential clinical use. J Transl Med. 2012;10(1):239. http://doi.org/10.1186/1479-5876-10-239 PMid:23190582 DOI: https://doi.org/10.1186/1479-5876-10-239

Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol. 2017;17(1):49-59. http://doi.org/10.1038/nri.2016.123 PMid:27916979 DOI: https://doi.org/10.1038/nri.2016.123

Kusindarta DL, Wihadmadyatami H. The role of extracellular matrix in tissue regeneration. In: Tissue Regeneration. London: InTech; 2018. DOI: https://doi.org/10.5772/intechopen.75728

Even-Ram S, Artym V, Yamada KM. Matrix control of stem cell fate. Cell. 2006;126(4):645-7. http://doi.org/10.1016/j.cell.2006.08.008 PMid:16923382 DOI: https://doi.org/10.1016/j.cell.2006.08.008

Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: Strategies, stem cells and scaffolds. J Anat. 2008;213(1):66-72. http://doi.org/10.1111/j.1469-7580.2008.00878.x PMid:18422523 DOI: https://doi.org/10.1111/j.1469-7580.2008.00878.x

Qu W, Chen B, Shu W, Tian H, Ou X, Zhang X, et al. Polymer-based scaffold strategies for spinal cord repair and regeneration. Front Bioeng Biotechnol. 2020;8:590549. http://doi.org/10.3389/fbioe.2020.590549 PMid:33117788 DOI: https://doi.org/10.3389/fbioe.2020.590549

Sakiyama-Elbert S, Johnson PJ, Hodgetts SI, Plant GW, Harvey AR. Scaffolds to promote spinal cord regeneration. Handb Clin Neurol. 2012;109:575594. http://doi.org/10.1016/B978-0-444-52137-8.00036-X PMid:23098738 DOI: https://doi.org/10.1016/B978-0-444-52137-8.00036-X

Orr MB, Gensel JC. Spinal cord injury scarring and inflammation: Therapies targeting glial and inflammatory responses. Neurotherapeutics. 2018;15(3):541-53. http://doi.org/10.1007/s13311-018-0631-6 PMid:29717413 DOI: https://doi.org/10.1007/s13311-018-0631-6

Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci. 2016;10:98. http://doi.org/10.3389/fncel.2016.00098 PMid:27147970 DOI: https://doi.org/10.3389/fncel.2016.00098

Tator CH, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg. 1997;86(3):483-92. http://doi.org/10.3171/jns.1997.86.3.0483 PMid:9046306 DOI: https://doi.org/10.3171/jns.1997.86.3.0483

Pivovarova NB, Andrews SB. Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J. 2010;277(18):3622-36. http://doi.org/10.1111/j.1742-4658.2010.07754.x PMid:20659161 DOI: https://doi.org/10.1111/j.1742-4658.2010.07754.x

Duchen MR. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflügers Arch. 2012;464(1):111-21. http://doi.org/10.1007/s00424-012-1112-0 PMid:22615071 DOI: https://doi.org/10.1007/s00424-012-1112-0

Song W, Song G, Zhao C, Li X, Pei X, Zhao W, et al. Testing pathological variation of white matter tract in adult rats after severe spinal cord injury with MRI. Biomed Res Int. 2018;2018:1-13. DOI: https://doi.org/10.1155/2018/4068156

Dunai Z, Bauer PI, Mihalik R. Necroptosis: Biochemical, physiological and pathological aspects. Pathol Oncol Res. 2011;17(4):791-800. http://doi.org/10.1007/s12253-011-9433-4 PMid:21773880 DOI: https://doi.org/10.1007/s12253-011-9433-4

Liu S, Li Y, Choi HMC, Sarkar C, Koh EY, Wu J, et al. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death Dis. 2018;9(5):476. http://doi.org/10.1038/s41419-018-0469-1 PMid:29686269 DOI: https://doi.org/10.1038/s41419-018-0469-1

Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011;71(2):281-99. PMid:21731081

Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS. Inflammation and apoptosis in spinal cord injury. Indian J Med Res. 2012;135(3):287-96. PMid:22561613

Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. http://doi.org/10.1080/01926230701320337 PMid:17562483 DOI: https://doi.org/10.1080/01926230701320337

Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209(2):378-88. http://doi.org/10.1016/j.expneurol.2007.06.009 PMid:17662717 DOI: https://doi.org/10.1016/j.expneurol.2007.06.009

Okada S. The pathophysiological role of acute inflammation after spinal cord injury. Inflamm Regen. 2016;36(1):20. DOI: https://doi.org/10.1186/s41232-016-0026-1

Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG. Spinal cord injury triggers systemic autoimmunity: Evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem. 2006;99(4):1073-87. http://doi.org/10.1111/j.1471-4159.2006.04147.x PMid:17081140 DOI: https://doi.org/10.1111/j.1471-4159.2006.04147.x

Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci. 2013;33(34):13882-7. http://doi.org/10.1523/JNEUROSCI.2524-13.2013 PMid:23966707 DOI: https://doi.org/10.1523/JNEUROSCI.2524-13.2013

Silver J. The glial scar is more than just astrocytes. Exp Neurol. 2016;286:147-9. http://doi.org/10.1016/j.expneurol.2016.06.018 PMid:27328838 DOI: https://doi.org/10.1016/j.expneurol.2016.06.018

Yang T, Dai Y, Chen G, Cui S. Dissecting the dual role of the glial scar and scar-forming astrocytes in spinal cord injury. Front Cell Neurosci. 2020;14:78. http://doi.org/10.3389/fncel.2020.00078 PMid:32317938 DOI: https://doi.org/10.3389/fncel.2020.00078

Galtrey CM, Fawcett JW. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev. 2007;54(1):1-18. http://doi.org/10.1016/j.brainresrev.2006.09.006 PMid:17222456 DOI: https://doi.org/10.1016/j.brainresrev.2006.09.006

Fehlings MG, Tetreault LA, Wilson JR, Kwon BK, Burns AS, Martin AR, et al. A clinical practice guideline for the management of acute spinal cord injury: Introduction, rationale, and scope. Glob Spine J. 2017;7 Suppl 3:84S-94. http://doi.org/10.1177/2192568217703387 PMid:29164036 DOI: https://doi.org/10.1177/2192568217703387

Bowers C, Kundu B, Hawryluk GJ. Methylprednisolone for acute spinal cord injury: An increasingly philosophical debate. Neural Regen Res. 2016;11(6):882-5. http://doi.org/10.4103/1673-5374.184450 PMid:27482201 DOI: https://doi.org/10.4103/1673-5374.184450

Zhao Y, Tang F, Xiao Z, Han G, Wang N, Yin N, et al. Clinical study of neuroregen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant. 2017;26(5):891-900. http://doi.org/10.3727/096368917X695038 PMid:28185615 DOI: https://doi.org/10.3727/096368917X695038

Deng WS, Ma K, Liang B, Liu XY, Xu HY, Zhang J, et al. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res. 2020;15(9):1686-700. http://doi.org/10.4103/1673-5374.276340 PMid:32209773 DOI: https://doi.org/10.4103/1673-5374.276340

Kim KD, Lee KS, Coric D, Chang JJ, Harrop JS, Theodore N, et al. A study of probable benefit of a bioresorbable polymer scaffold for safety and neurological recovery in patients with complete thoracic spinal cord injury: 6-month results from the INSPIRE study. J Neurosurg Spine. 2021;5:1-10. http://doi.org/10.3171/2020.8.SPINE191507 PMid:33545674 DOI: https://doi.org/10.3171/2020.8.SPINE191507

Straley KS, Foo CWP, Heilshorn SC. Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. J Neurotrauma. 2010;27(1):1-19. http://doi.org/10.1089/neu.2009.0948 PMid:19698073 DOI: https://doi.org/10.1089/neu.2009.0948

Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol. 2016;4:71. http://doi.org/10.3389/fcell.2016.00071 PMid:27551677 DOI: https://doi.org/10.3389/fcell.2016.00071

Wang H, Liu X, Li R, Zhang P, Chu Z, Wang C, et al. Effect of glial cells on remyelination after spinal cord injury. Neural Regen Res. 2017;12(10):1724-32. http://doi.org/10.4103/1673-5374.217354 PMid:29171439 DOI: https://doi.org/10.4103/1673-5374.217354

Gao L, Peng Y, Xu W, He P, Li T, Lu X, et al. Progress in stem cell therapy for spinal cord injury. Stem Cells Int. 2020;2020:2853650. http://doi.org/10.1155/2020/2853650 PMid:33204276 DOI: https://doi.org/10.1155/2020/2853650

Khan FA, Almohazey D, Alomari M, Almofty SA. Isolation, culture, and functional characterization of human embryonic stem cells: Current trends and challenges. Stem Cells Int. 2018;2018:1429351. http://doi.org/10.1155/2018/1429351 PMid:30254679 DOI: https://doi.org/10.1155/2018/1429351

Adeeb N, Deep A, Hose N, Rezaei M, Fard SA, Tubbs RS, et al. Stem cell therapy for spinal cord injury: The use of oligodendrocytes and motor neurons derived from human embryonic stem cells. Transl Res Anat. 2015;1:17-24. DOI: https://doi.org/10.1016/j.tria.2015.10.003

Huang L, Fu C, Xiong F, He C, Wei Q. Stem cell therapy for spinal cord injury. Cell Transplant. 2021;30:096368972198926. http://doi.org/10.1177/0963689721989266 PMid:33559479 DOI: https://doi.org/10.1177/0963689721989266

Gazdic M, Volarevic V, Harrell C, Fellabaum C, Jovicic N, Arsenijevic N, et al. Stem cells therapy for spinal cord injury. Int J Mol Sci. 2018;19(4):1039. PMid:29601528 DOI: https://doi.org/10.3390/ijms19041039

Shroff G, Gupta R. Human embryonic stem cells in the treatment of patients with spinal cord injury. Ann Neurosci. 2015;22(4):208-16. http://doi.org/10.5214/ans.0972.7531.220404 PMid:26526627 DOI: https://doi.org/10.5214/ans.0972.7531.220404

Shroff G. Human embryonic stem cell therapy in chronic spinal cord injury: A retrospective study. Clin Transl Sci. 2016;9(3):168-75. http://doi.org/10.1111/cts.12394 PMid:27144379 DOI: https://doi.org/10.1111/cts.12394

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315-7. http://doi.org/10.1080/14653240600855905 PMid:16923606 DOI: https://doi.org/10.1080/14653240600855905

Dasari VR. Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J Stem Cells. 2014;6(2):120-33. http://doi.org/10.4252/wjsc.v6.i2.120 PMid:24772239 DOI: https://doi.org/10.4252/wjsc.v6.i2.120

Ulndreaj A, Chio JC, Ahuja CS, Fehlings MG. Modulating the immune response in spinal cord injury. Expert Rev Neurother. 2016;16(10):1127-9. http://doi.org/10.1080/14737175.2016.1207532 PMid:27352883 DOI: https://doi.org/10.1080/14737175.2016.1207532

Trivedi A, Olivas AD, Noble-Haeusslein LJ. Inflammation and spinal cord injury: Infiltrating leukocytes as determinants of injury and repair processes. Clin Neurosci Res. 2006;6(5):283-92. http://doi.org/10.1016/j.cnr.2006.09.007 PMid:18059979 DOI: https://doi.org/10.1016/j.cnr.2006.09.007

Neirinckx V, Coste C, Franzen R, Gothot A, Rogister B, Wislet S. Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation. 2014;11(1):150. http://doi.org/10.1186/s12974-014-0150-2 PMid:25163400 DOI: https://doi.org/10.1186/s12974-014-0150-2

Lee SM, Rosen S, Weinstein P, van Rooijen N, Noble-Haeusslein LJ. Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury. J Neurotrauma. 2011;28(9):1893-907. http://doi.org/10.1089/neu.2011.1860 PMid:21657851 DOI: https://doi.org/10.1089/neu.2011.1860

Ren Y, Young W. Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast. 2013;2013:945034. http://doi.org/10.1155/2013/945034 PMid:24288627 DOI: https://doi.org/10.1155/2013/945034

Ren H, Chen X, Tian M, Zhou J, Ouyang H, Zhang Z. Regulation of inflammatory cytokines for spinal cord injury repair through local delivery of therapeutic agents. Adv Sci. 2018;5(11):1800529. http://doi.org/10.1002/advs.201800529 PMid:30479916 DOI: https://doi.org/10.1002/advs.201800529

Marcantoni M, Fuchs A, Löw P, Bartsch D, Kiehn O, Bellardita C. Early delivery and prolonged treatment with nimodipine prevents the development of spasticity after spinal cord injury in mice. Sci Transl Med. 2020;12(539):eaay0167. http://doi.org/10.1126/scitranslmed.aay0167 PMid:32295897 DOI: https://doi.org/10.1126/scitranslmed.aay0167

Gwak YS, Hulsebosch CE. GABA and central neuropathic pain following spinal cord injury. Neuropharmacology. 2011;60(5):799-808. http://doi.org/10.1016/j.neuropharm.2010.12.030 PMid:21216257 DOI: https://doi.org/10.1016/j.neuropharm.2010.12.030

Shultz R, Zhong Y. Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res. 2017;12(5):702-13. http://doi.org/10.4103/1673-5374.206633 PMid:28616020 DOI: https://doi.org/10.4103/1673-5374.206633

Keefe K, Sheikh I, Smith G. Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int J Mol Sci. 2017;18(3):548. http://doi.org/10.3390/ijms18030548 PMid:28273811 DOI: https://doi.org/10.3390/ijms18030548

Zhang H, Wu F, Kong X, Yang J, Chen H, Deng L, et al. Nerve growth factor improves functional recovery by inhibiting endoplasmic reticulum stress-induced neuronal apoptosis in rats with spinal cord injury. J Transl Med. 2014;12(1):130. http://doi.org/10.1186/1479-5876-12-130 PMid:24884850 DOI: https://doi.org/10.1186/1479-5876-12-130

Donovan J, Kirshblum S. Clinical trials in traumatic spinal cord injury. Neurotherapeutics. 2018;15(3):654-68. http://doi.org/10.1007/s13311-018-0632-5 PMid:29736858 DOI: https://doi.org/10.1007/s13311-018-0632-5

Xiao Z, Zhao Y, Chen B, Dai J. Scaffolds for spinal cord injury repair: From proof of concept to first in-human studies and clinical trials. In: Handbook of Innovations in Central Nervous System Regenerative Medicine. Amsterdam, Netherlands: Elsevier; 2020. p. 603-19. DOI: https://doi.org/10.1016/B978-0-12-818084-6.00017-9

Ko CC, Tu TH, Wu JC, Huang WC, Cheng H. Acidic fibroblast growth factor in spinal cord injury. Neurospine. 2019;16(4):728-38. http://doi.org/10.14245/ns.1836216.108 PMid:30653905 DOI: https://doi.org/10.14245/ns.1836216.108

Rosner J, Avalos P, Acosta F, Liu J, Drazin D. The potential for cellular therapy combined with growth factors in spinal cord injury. Stem Cells Int. 2012;2012:1-11. DOI: https://doi.org/10.1155/2012/826754

Yokota K, Fehlings MG. Acidic fibroblast growth factor in spinal cord injury: A potential therapy which merits further investigation. Neurospine. 2019;16(4):739-41. http://doi.org/10.14245/ns.19edi.018 PMid:31905463 DOI: https://doi.org/10.14245/ns.19edi.018

Zhou Y, Wang Z, Li J, Li X, Xiao J. Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med. 2018;22(1):25-37. http://doi.org/10.1111/jcmm.13353 PMid:29063730 DOI: https://doi.org/10.1111/jcmm.13353

Ortmann S, Hellenbrand D. Glial cell line-derived neurotrophic factor as a treatment after spinal cord injury. Neural Regen Res. 2018;13(10):1733-4. http://doi.org/10.4103/1673-5374.238610 PMid:30136685 DOI: https://doi.org/10.4103/1673-5374.238610

Yin Y, He XT, Wang J, Wu RX, Xu XY, Hong YL, et al. Pore size-mediated macrophage M1-to-M2 transition influences new vessel formation within the compartment of a scaffold. Appl Mater Today. 2020;18:100466. DOI: https://doi.org/10.1016/j.apmt.2019.100466

Tylek T, Blum C, Hrynevich A, Schlegelmilch K, Schilling T, Dalton PD, et al. Precisely defined fiber scaffolds with 40 μ m porosity induce elongation driven M2-like polarization of human macrophages. Biofabrication. 2020;12(2):025007. http://doi.org/10.1088/1758-5090/ab5f4e PMid:31805543 DOI: https://doi.org/10.1088/1758-5090/ab5f4e

Cao J, Wu J, Mu J, Feng S, Gao J. The design criteria and therapeutic strategy of functional scaffolds for spinal cord injury repair. Biomater Sci. 2021;9(13):4591-606. http://doi.org/10.1039/d1bm00361e PMid:34018520 DOI: https://doi.org/10.1039/D1BM00361E

Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: A review. Adv Mater Sci Eng. 2019;2019:1-13. DOI: https://doi.org/10.1155/2019/3429527

Zhang H, Zhou L, Zhang W. Control of scaffold degradation in tissue engineering: A review. Tissue Eng Part B Rev. 2014;20(5):492-502. http://doi.org/10.1089/ten.TEB.2013.0452 PMid:24547761 DOI: https://doi.org/10.1089/ten.teb.2013.0452

Shrestha B, Coykendall K, Li Y, Moon A, Priyadarshani P, Yao L. Repair of injured spinal cord using biomaterial scaffolds and stem cells. Stem Cell Res Ther. 2014;5(4):91. http://doi.org/10.1186/scrt480 PMid:25157690 DOI: https://doi.org/10.1186/scrt480

Tabesh H, Amoabediny G, Nik NS, Heydari M, Yosefifard M, Siadat SO, et al. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem Int. 2009;54(2):73-83. PMid:19084565 DOI: https://doi.org/10.1016/j.neuint.2008.11.002

Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials (Basel). 2019;12(11):1824. http://doi.org/10.3390/ma12111824 PMid:31195642 DOI: https://doi.org/10.3390/ma12111824

Seil JT, Webster TJ. Electrically active nanomaterials as improved neural tissue regeneration scaffolds. WIREs Nanomed Nanobiotechnol. 2010;2(6):635-47. http://doi.org/10.1002/wnan.109 PMid:20730786 DOI: https://doi.org/10.1002/wnan.109

Patel N, Poo M. Orientation of neurite growth by extracellular electric fields. J Neurosci. 1982;2(4):483-96. http://doi.org/10.1523/JNEUROSCI.02-04-00483.1982 PMid:6279799 DOI: https://doi.org/10.1523/JNEUROSCI.02-04-00483.1982

Balgude A. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials. 2001;22(10):1077-84. DOI: https://doi.org/10.1016/S0142-9612(00)00350-1

Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda R V. Sustained delivery of activated rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury. PLoS One. 2011;6(1):e16135. http://doi.org/10.1371/journal.pone.0016135 PMid:21283639 DOI: https://doi.org/10.1371/journal.pone.0016135

Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6(8):623-33. http://doi.org/10.1002/mabi.200600069 PMid:16881042 DOI: https://doi.org/10.1002/mabi.200600069

Grijalvo S, Nieto-Díaz M, Maza RM, Eritja R, Díaz DD. Alginate hydrogels as scaffolds and delivery systems to repair the damaged spinal cord. Biotechnol J. 2019;14(12):1900275. http://doi.org/10.1002/biot.201900275 PMid:31677223 DOI: https://doi.org/10.1002/biot.201900275

Li X, Dai J. Bridging the gap with functional collagen scaffolds: Tuning endogenous neural stem cells for severe spinal cord injury repair. Biomater Sci. 2018;6(2):265-71. DOI: https://doi.org/10.1039/C7BM00974G

Yao L, Damodaran G, Nikolskaya N, Gorman AM, Windebank A, Pandit A. The effect of laminin peptide gradient in enzymatically cross-linked collagen scaffolds on neurite growth. J Biomed Mater Res Part A. 2010;92:484-92. http://doi.org/10.1002/jbm.a.32359 PMid:19213056 DOI: https://doi.org/10.1002/jbm.a.32359

Kourgiantaki A, Tzeranis DS, Karali K, Georgelou K, Bampoula E, Psilodimitrakopoulos S, et al. Neural stem cell delivery via porous collagen scaffolds promotes neuronal differentiation and locomotion recovery in spinal cord injury. Npj Regen Med. 2020;5(1):12. DOI: https://doi.org/10.1038/s41536-020-0097-0

Li JJ, Liu H, Zhu Y, Yan L, Liu R, Wang G, et al. Animal models for treating spinal cord injury using biomaterials-based tissue engineering strategies. Tissue Eng Part B Rev. 2021;2021:267. http://doi.org/10.1089/ten.TEB.2020.0267 PMid:33267667 DOI: https://doi.org/10.1089/ten.teb.2020.0267

Rodríguez-Vázquez M, Ramos-Zúñiga R. Chitosanhydroxyapatite scaffold for tissue engineering in experimental lumbar laminectomy and posterolateral spinal fusion in wistar rats. Asian Spine J. 2020;14(2):139-47. http://doi.org/10.31616/asj.2019.0091 PMid:31679322 DOI: https://doi.org/10.31616/asj.2019.0091

Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int. 2015;2015:821279. http://doi.org/10.1155/2015/821279 PMid:26504833 DOI: https://doi.org/10.1155/2015/821279

Chedly J, Soares S, Montembault A, von Boxberg Y, Veron-Ravaille M, Mouffle C, et al. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials. 2017;138:91-107. http://doi.org/10.1016/j.biomaterials.2017.05.024 PMid:28554011 DOI: https://doi.org/10.1016/j.biomaterials.2017.05.024

Assunção-Silva RC, Gomes ED, Sousa N, Silva NA, Salgado AJ. Hydrogels and cell based therapies in spinal cord injury regeneration. Stem Cells Int. 2015;2015:948040. https://doi.org/10.1155/2015/948040 DOI: https://doi.org/10.1155/2015/948040

Johnson PJ, Parker SR, Sakiyama-Elbert SE. Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J Biomed Mater Res Part A. 2010;92A(1):152-63. https://doi.org/10.1002/jbm.a.32343 PMid:19165795 DOI: https://doi.org/10.1002/jbm.a.32343

Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: Combinatory approaches to address a multifaceted problem. EMBO Mol Med. 2020;12(3):e11505. https://doi.org/10.15252/emmm.201911505 PMid:32090481 DOI: https://doi.org/10.15252/emmm.201911505

Willerth SM, Faxel TE, Gottlieb DI, Sakiyama-Elbert SE. The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells. 2007;25(9):2235-44. https://doi.org/10.1634/stemcells.2007-0111 PMid:17585170 DOI: https://doi.org/10.1634/stemcells.2007-0111

Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894-904. https://doi.org/10.1111/j.1538-7836.2005.01365.x PMid:16102057 DOI: https://doi.org/10.1111/j.1538-7836.2005.01365.x

Zarei-Kheirabadi M, Sadrosadat H, Mohammadshirazi A, Jaberi R, Sorouri F, Khayyatan F, et al. Human embryonic stem cell-derived neural stem cells encapsulated in hyaluronic acid promotes regeneration in a contusion spinal cord injured rat. Int J Biol Macromol. 2020;148:1118-29. https://doi.org/10.1016/j.ijbiomac.2020.01.219 PMid:31982534 DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.219

Thompson RE, Pardieck J, Smith L, Kenny P, Crawford L, Shoichet M, et al. Effect of hyaluronic acid hydrogels containing astrocyte-derived extracellular matrix and/or V2a interneurons on histologic outcomes following spinal cord injury. Biomaterials. 2018;162:208-23. https://doi.org/10.1016/j.biomaterials.2018.02.013 PMid:29459311 DOI: https://doi.org/10.1016/j.biomaterials.2018.02.013

Khaing ZZ, Milman BD, Vanscoy JE, Seidlits SK, Grill RJ, Schmidt CE. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J Neural Eng. 2011;8(4):046033. https://doi.org/10.1088/1741-2560/8/4/046033 PMid:21753237 DOI: https://doi.org/10.1088/1741-2560/8/4/046033

Kushchayev SV, Giers MB, Eng DH, Martirosyan NL, Eschbacher JM, Mortazavi MM, et al. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury. J Neurosurg Spine. 2016;25(1):114-24. https://doi.org/10.3171/2015.9.SPINE15628 PMid:26943251 DOI: https://doi.org/10.3171/2015.9.SPINE15628

Ghane N, Beigi MH, Labbaf S, Nasr-Esfahani MH, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B. 2020;8(47):10712-38. DOI: https://doi.org/10.1039/D0TB01842B

Shultz R, Zhong Y. Hydrogel-based local drug delivery strategies for spinal cord repair. Neural Regen Res. 2021;16(2):247-53. https://doi.org/10.4103/1673-5374.290882 PMid:32859771 DOI: https://doi.org/10.4103/1673-5374.290882

Wang Y, Tan H, Hui X. Biomaterial scaffolds in regenerative therapy of the central nervous system. Biomed Res Int. 2018;2018:7848901. https://doi.org/10.1155/2018/7848901 PMid:29805977 DOI: https://doi.org/10.1155/2018/7848901

Kong X, Tang Q, Chen X, Tu Y, Sun S, Sun Z. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury. Neural Regen Res. 2017;12(6):1003-8. https://doi.org/10.4103/1673-5374.208597 PMid:28761436 DOI: https://doi.org/10.4103/1673-5374.208597

Conova L, Kubinski P, Jin Y, Vernengo J, Neuhuber B, Fischer I, et al. Injectable multifunctional scaffold for spinal cord repair. In: Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC). IEEE; 2010. p. 1-2. DOI: https://doi.org/10.1109/NEBC.2010.5458269

Ruzicka J, Romanyuk N, Jirakova K, Hejcl A, Janouskova O, Machova LU, et al. The effect of iPS-derived neural progenitors seeded on laminin-coated pHEMA-MOETACl hydrogel with dual porosity in a rat model of chronic spinal cord injury. Cell Transplant. 2019;28(4):400-12. https://doi.org/10.1177/0963689718823705 PMid:30654639 DOI: https://doi.org/10.1177/0963689718823705

Pan Z, Ding J. Poly(lactide- co -glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus. 2012;2(3):366-77. https://doi.org/10.1016/j.addr.2016.04.019 PMid:27125190 DOI: https://doi.org/10.1098/rsfs.2011.0123

Wang C, Sun C, Hu Z, Huo X, Yang Y, Liu X, et al. Improved neural regeneration with olfactory ensheathing cell inoculated PLGA scaffolds in spinal cord injury adult rats. Neurosignals. 2017;25(1):1-14. https://doi.org/10.1159/000471828 PMid:28359049 DOI: https://doi.org/10.1159/000471828

Elmowafy EM, Tiboni M, Soliman ME. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig. 2019;49(4):347-80. DOI: https://doi.org/10.1007/s40005-019-00439-x

Downloads

Published

2021-11-29

How to Cite

1.
Sakti YM, Malueka RG, Dwianingsih EK, Kusumaatmaja A, Mafaza A, Emiri DM. Diamond Concept as Principle for the Development of Spinal Cord Scaffold: A Literature Review. Open Access Maced J Med Sci [Internet]. 2021 Nov. 29 [cited 2024 Nov. 23];9(F):754-69. Available from: https://oamjms.eu/index.php/mjms/article/view/7438

Issue

Section

Narrative Review Article

Categories