Mechanism of Lactobacillus reuteri Probiotic in Increasing Intestinal Mucosal Immune System
DOI:
https://doi.org/10.3889/oamjms.2021.7447Keywords:
Lactobacillus reuteri, Intestinal mucosa, ImmunityAbstract
Probiotics are defined as live microorganisms which, when consumed in adequate quantities as food ingredients, provide health benefits to the host. Lactobacillus, Bifidobacterium, and Saccharomyces, are three probiotics that are intensively used as probiotics in humans and animals. Probiotics have beneficial effects on health when given adequate amounts. The concept of probiotics on human health, namely modulating the gut microbiota and its effect on the host. Probiotics play an important role in maintaining intestinal integrity through a number of different interactions, including changes in cytokine expression in the mucosa. Probiotics compete with intestinal pathogens for mucosal receptors, thereby increasing interepithelial resistance. Probiotics such as Lactobacillus casei sp GG strain was used as a prophylaxis that could increase the expression of epithelial mucin, thereby reducing the translocation of pathogenic bacteria. Abnormal local immune response is characterized by decreased secretion of IgA, thus allowing enterocyte attachment and local translocation of bacterial antigens, which are the main stimulation of pathological events. Colonic stasis can promote the growth of pathogenic bacteria which allows malignant porin bacterial strains to thrive. The gut microbiota has a major influence on human health. The microbial population has an important role in the host, such as the metabolic activity of probiotics producing energy and nutrient absorption, developing the host immune system, and preventing colonization and infection of pathogens. Lactobacillus reuteri is a hetero-fermentative bacterium that lives in the digestive tract of humans. L. reuteri has been used to treat infant necrotizing pseudomembrane. In this paper, the mechanism of L reuteri to increase host immunological response will be reviewed.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Fijan S. Microorganisms with claimed probiotic properties: An overview of recent literature. Int J Environ Res Public Health. 2014;11(5):4745-67. http://doi.org/10.3390/ijerph110504745 PMid:24859749 DOI: https://doi.org/10.3390/ijerph110504745
Shi LH, Balakrishnan K, Thiagarajah K, Ismail NI, Yin OS. Beneficial properties of probiotics. Trop Life Sci Res. 2016;27(2):73-90. http://doi.org/10.21315/tlsr2016.27.2.6 PMid:27688852 DOI: https://doi.org/10.21315/tlsr2016.27.2.6
Stavropoulou E, Bezirtzoglou E. Probiotics in medicine: A long debate. Front Immunol. 2020;11:2192. http://doi.org/10.3389/fimmu.2020.02192 PMid:33072084 DOI: https://doi.org/10.3389/fimmu.2020.02192
LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 2017;16(1):79. http://doi.org/10.1186/s12934-017-0691-z PMid:28482838 DOI: https://doi.org/10.1186/s12934-017-0691-z
Manor O, Dai CL, Kornilov SA, Smith B, Price ND, Lovejoy JC, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020;11(1):5206. http://doi.org/10.1038/s41467-020-18871-1 PMid:33060586 DOI: https://doi.org/10.1038/s41467-020-18871-1
Sugiyama K, Muroi M, Kinoshita M, Hamada O, Minai Y, Sugita-Konishi Y, et al. NF-κB activation via MyD88-dependent Tolllike receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol. J Toxicol Sci. 2016;41(2):273-9. http://doi.org/10.2131/jts.41.273 PMid:26961612 DOI: https://doi.org/10.2131/jts.41.273
Feerick CL, McKernan DP. Understanding the regulation of pattern recognition receptors in inflammatory diseases a “Nod” in the right direction. Immunology. 2017;150(3):237-47. http://doi.org/10.1111/imm.12677 PMid:27706808 DOI: https://doi.org/10.1111/imm.12677
Schertzer JW, Whiteley M. Bacterial outer membrane vesicles in trafficking, communication and the host-pathogen interaction. J Mol Microbiol Biotechnol. 2013;23(1-2):118-30. http://doi.org/10.1159/000346770 PMid:23615200 DOI: https://doi.org/10.1159/000346770
Olsen I, Amano A. Outer membrane vesicles offensive weapons or good Samaritans? J Oral Microbiol. 2015;7:27468. http://doi.org/10.3402/jom.v7.27468 PMid:25840612 DOI: https://doi.org/10.3402/jom.v7.27468
Shen Y, Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK, et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012;12(4):509-20. http://doi.org/10.1016/j.chom.2012.08.004 PMid:22999859 DOI: https://doi.org/10.1016/j.chom.2012.08.004
López P, González-Rodríguez I, Sánchez B, Gueimonde M, Margolles A, Suárez A. Treg-inducing membrane vesicles from Bifidobacterium bifidum LMG13195 as potential adjuvants in immunotherapy. Vaccine. 2012;30(5):825-9. http://doi.org/10.1016/j.vaccine.2011.11.115 PMid:22172507 DOI: https://doi.org/10.1016/j.vaccine.2011.11.115
Yan F, Polk DB. Probiotics and immune health. Curr Opin Gastroenterol. 2011;27(6):496-501. http://doi.org/10.1097/MOG.0b013e32834baa4d PMid:21897224 DOI: https://doi.org/10.1097/MOG.0b013e32834baa4d
Vanderpool C, Yan F, Polk DB. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis. 2008;14(11):1585-96. http://doi.org/10.1002/ibd.20525 PMid:18623173 DOI: https://doi.org/10.1002/ibd.20525
van den Nieuwboer M, van Hemert S, Claassen E, de Vos WM. Lactobacillus plantarum WCFS1 and its host interaction: A dozen years after the genome. Microb Biotechnol. 2016;9(4):452-65. http://doi.org/10.1111/1751-7915.12368 PMid:27231133 DOI: https://doi.org/10.1111/1751-7915.12368
Meijerink M, van Hemert S, Taverne N, Wels M, de Vos P, Bron PA, et al. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLOS One. 2010;5(5):e10632. http://doi.org/10.1371/journal.pone.0010632 PMid:20498715 DOI: https://doi.org/10.1371/journal.pone.0010632
Hancock V, Dahl M, Klemm P. Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. J Med Microbiol. 2010;59(Pt 4):392-9. http://doi.org/10.1099/jmm.0.008672-0 PMid:20110388 DOI: https://doi.org/10.1099/jmm.0.008672-0
Hofman PM. Pathobiology of the neutrophil-intestinal epithelial cell interaction: Role in carcinogenesis. World J Gastroenterol. 2010;16(46):5790-800. http://doi.org/10.3748/wjg.v16.i46.5790 PMid:21154999 DOI: https://doi.org/10.3748/wjg.v16.i46.5790
Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 2010;298(6):G807-19. http://doi.org/10.1152/ajpgi.00243.2009 PMid:20299599 DOI: https://doi.org/10.1152/ajpgi.00243.2009
Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut, 2003;52(6):827-33. http://doi.org/10.1136/gut.52.6.827 PMid:12740338 DOI: https://doi.org/10.1136/gut.52.6.827
Otte JM, Podolsky DK. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol. 2004;286(4):G613-26. http://doi.org/10.1152/ajpgi.00341.2003 PMid:15010363 DOI: https://doi.org/10.1152/ajpgi.00341.2003
Gaudier E, Michel C, Segain JP, Cherbut C, Hoebler C. The VSL# 3 probiotic mixture modifies microflora but does not heal chronic dextran-sodium sulfate-induced colitis or reinforce the mucus barrier in mice. J Nutr. 2005;135(12):2753-61. http://doi.org/10.1093/jn/135.12.2753 PMid:16317116 DOI: https://doi.org/10.1093/jn/135.12.2753
Caballero-Franco C, Keller K, De Simone C, Chadee K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G315-22. http://doi.org/10.1152/ajpgi.00265.2006 PMid:16973917 DOI: https://doi.org/10.1152/ajpgi.00265.2006
Boirivant M, Strober W. The mechanism of action of probiotics. Curr Opin Gastroenterol. 2007;23(6):679-92. http://doi.org/10.1097/MOG.0b013e3282f0cffc PMid:17906447 DOI: https://doi.org/10.1097/MOG.0b013e3282f0cffc
Beimfohr C. A review of research conducted with probiotic E. coli marketed as symbioflor. Int J Bacteriol. 2016;2016:3535621. http://doi.org/10.1155/2016/3535621 PMid:27995179 DOI: https://doi.org/10.1155/2016/3535621
Simon E, Călinoiu LF, Mitrea L, Vodnar DC. Probiotics, prebiotics, and synbiotics: Implications and beneficial effects against irritable bowel syndrome. Nutrients. 2021;13(6):2112. http://doi.org/10.3390/nu13062112 PMid:34203002 DOI: https://doi.org/10.3390/nu13062112
Li N, Pang B, Li J, Liu G, Xu X, Shao D, et al. Mechanisms for Lactobacillus rhamnosus treatment of intestinal infection by drug-resistant Escherichia coli. Food Funct. 2020;11(5):4428-45. http://doi.org/10.1039/d0fo00128g PMid:32374342 DOI: https://doi.org/10.1039/D0FO00128G
Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A, et al. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol. 2019;103(16):6463-72. http://doi.org/10.1007/s00253-019-09978-7 PMid:31267231 DOI: https://doi.org/10.1007/s00253-019-09978-7
Wells JM, Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol. 2008;6(5):349-62. http://doi.org/10.1038/nrmicro1840 PMid:18345021 DOI: https://doi.org/10.1038/nrmicro1840
van Baarlen P, van Belkum A, Summerbell RC, Crous PW, Thomma BP. Molecular mechanisms of pathogenicity: How do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev. 2007;31(3):239-77. http://doi.org/10.1111/j.1574-6976.2007.00065.x PMid:17326816 DOI: https://doi.org/10.1111/j.1574-6976.2007.00065.x
Dorrington MG, Fraser ID. NF-κB signaling in macrophages: Dynamics, crosstalk, and signal integration. Front Immunol. 2019;10:705. PMid:31024544 DOI: https://doi.org/10.3389/fimmu.2019.00705
Galdeano CM, Cazorla SI, Dumit JM, Vélez E, Perdigón G. Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab. 2019;74(2):115-24. http://doi.org/10.1159/000496426 PMid:30673668 DOI: https://doi.org/10.1159/000496426
Hara S, Sasaki T, Satoh-Takayama N, Kanaya T, Kato T, Takikawa Y, et al. Dietary antigens induce germinal center responses in Peyer’s patches and antigen-specific IgA production. Front Immunol. 2019;10:2432. http://doi.org/10.3389/fimmu.2019.02432 PMid:31681315 DOI: https://doi.org/10.3389/fimmu.2019.02432
Qamar A, Aboudola S, Warny M, Michetti P, Pothoulakis C, LaMont JT, et al. Saccharomyces boulardii stimulates intestinal immunoglobulin a immune response to Clostridium difficile toxin A in mice. Infect Immun. 2001;69(4):2762-5. http://doi.org/10.1128/IAI.69.4.2762-2765.2001 PMid:11254650 DOI: https://doi.org/10.1128/IAI.69.4.2762-2765.2001
Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6(1):39-51. http://doi.org/10.1177/1756283X12459294 PMid:23320049 DOI: https://doi.org/10.1177/1756283X12459294
Thomas CM, Versalovic J. Probiotics-host communication: Modulation of signaling pathways in the intestine. Gut Microbes. 2010;1(3):148-63. http://doi.org/10.4161/gmic.1.3.11712 PMid:20672012 DOI: https://doi.org/10.4161/gmic.1.3.11712
Hu R, Lin H, Wang M, Zhao Y, Liu H, Min Y, et al. Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responses in broilers. J Anim Sci Biotechnol. 2021;12(1):25. DOI: https://doi.org/10.1186/s40104-020-00532-4
Reséndiz-Albor AA, Reina-Garfias H, Rojas-Hernández S, Jarillo-Luna A, Rivera-Aguilar V, Miliar-García A, et al. Regionalization of pIgR expression in the mucosa of mouse small intestine. Immunol Lett. 2010;128(1):59-67. http://doi.org/10.1016/j.imlet.2009.11.005 PMid:19925828 DOI: https://doi.org/10.1016/j.imlet.2009.11.005
Casas I, Dobrogosz W. Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microbial Ecol Health Dis. 2000;12:247-85. https://doi.org/10.1080/08910600050216246-1 DOI: https://doi.org/10.1080/08910600050216246-1
Hoang TK, He B, Wang R, Tran DQ, Rhoads JM, Liu Y. Protective effect of Lactobacillus reuteri DSM 17938 against experimental necrotizing enterocolitis is mediated by Toll-like receptor 2. Am J Physiol Gastrointest Liver Physiol. 2018;315(2):G231-40. https://doi.org/10.1152/ajpgi.00084.2017 PMid:29648878 DOI: https://doi.org/10.1152/ajpgi.00084.2017
Hou C, Zeng X, Yang F, Liu H, Qiao S. Study and use of the probiotic Lactobacillus reuteri in pigs: A review. J Anim Sci Biotechnol. 2015;6(1):14. https://doi.org/10.1186/s40104-015-0014-3 PMid:25954504 DOI: https://doi.org/10.1186/s40104-015-0014-3
Collins FL, Rios-Arce ND, Schepper JD, Jones AD, Schaefer L, Britton RA, et al. Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes. Sci Rep. 2019;9(1):14708. https://doi.org/10.1038/s41598-019-51293-8 PMid:31605025 DOI: https://doi.org/10.1038/s41598-019-51293-8
Liu Y, Tran DQ, Fatheree NY, Rhoads JM. Lactobacillus reuteri DSM 17938 differentially modulates effector memory T cells and Foxp3+ regulatory T cells in a mouse model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2014;307(2):G177-86. https://doi.org/10.1152/ajpgi.00038.2014 PMid:24852566 DOI: https://doi.org/10.1152/ajpgi.00038.2014
Vestman NR, Hasslöf P, Keller MK, Granström E, Roos S, Twetman S, et al. Lactobacillus reuteri influences regrowth of mutans streptococci after full-mouth disinfection: A double-blind, randomised controlled trial. Caries Res. 2013;47(4):338-45. https://doi.org/10.1159/000347233 PMid:23486236 DOI: https://doi.org/10.1159/000347233
Haileselassie Y, Navis M, Vu N, Qazi KR, Rethi B, Sverremark-Ekström E. Postbiotic modulation of retinoic acid imprinted mucosal-like dendritic cells by probiotic Lactobacillus reuteri 17938 in vitro. Front Immunol. 2016;7:96. https://doi.org/10.3389/fimmu.2016.00096 PMid:27014275 DOI: https://doi.org/10.3389/fimmu.2016.00096
Azevedo MS, Zhang W, Wen K, Gonzalez AM, Saif LJ, Yousef AE, et al. Lactobacillus acidophilus and Lactobacillus reuteri modulate cytokine responses in gnotobiotic pigs infected with human rotavirus. Benef Microbes. 2012;3(1):33-42. PMid:22348907 DOI: https://doi.org/10.3920/BM2011.0041
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Musjaya Guli, Sri Winarsih, Wisnu Barlianto, Oski Illiandri, S. P. Sumarno (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0