Antibacterial Screening of Endophytic Fungus Xylaria sp. derived from Andrographis paniculata (Sambiloto)

Authors

  • Suryelita Suryelita Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
  • Riga Riga Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia https://orcid.org/0000-0003-3395-1577
  • Sri Benti Etika Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
  • Mariam Ulfah Department of Pharmacy, STIKES Muhammadiyah Cirebon, Cirebon, Indonesia
  • Muh Ade Artasasta Department of Biotechnology, Faculty of Mathematics and Natural Sciences, University Negeri Malang, Malang, Indonesia https://orcid.org/0000-0003-4904-201X

DOI:

https://doi.org/10.3889/oamjms.2021.7475

Keywords:

Andrographis paniculata, Antibacterial activity, Endophytic fungus, Xylaria sp.

Abstract

AIM: The purpose of this research is to evaluate the antibacterial activity of endophytic fungi derived from the flowers of Andrographis paniculata (Sambiloto).

METHODS: The endophytic fungi were obtained following the dilution method with potato dextrose agar as media. Four isolates of fungi have been obtained and then fermented with rice media for 3 weeks. The fermented fungi were extracted with ethyl acetate (EtOAc) and evaporated to yield the EtOAc extract. All EtOAc extracts were evaluated for their antibacterial activity using agar diffusion method.

RESULTS: The results indicated that the EtOAc extract from fungus RG-2 was the potential source of antibacterial compounds. Molecular identification showing fungus RG-2 was Xylaria sp.

CONCLUSION: Further investigation of the antibacterial compounds produced by fungus Xylaria sp. derived from the flowers of A. paniculata will be performed in the future. To the best of our knowledge, endophytic fungal Xylaria sp. is firstly isolated from A. paniculata.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Hossain MS, Urbi Z, Sule A, Rahman KM. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci World J. 2014;2014:274905. https://doi.org/10.1155/2014/274905 PMid:25950015 DOI: https://doi.org/10.1155/2014/274905

Joselin J, Jeeva S. Andrographis paniculata: A review of its traditional uses, phytochemistry and pharmacology. Med Aromat Plants. 2014;3(4):1-15. https://doi.org/10.4172/2167-0412.1000169 DOI: https://doi.org/10.4172/2167-0412.1000169

Okhuarobo A, Falodun JE, Erharuyi O, Imieje V, Falodun A, Langer P. Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pac J Trop Dis. 2014;4(3):213-22. https://doi.org/10.1016/s2222-1808(14)60509-0 DOI: https://doi.org/10.1016/S2222-1808(14)60509-0

Utaminingrum W, Nofrianti N, Hartanti D. Ethnomedicinal survey of traditional antidiabetic plants in Baturraden and Sumbang. Medisains. 2020;18(2):43-51. https://doi.org/10.30595/medisains.v18i2.7169 DOI: https://doi.org/10.30595/medisains.v18i2.7169

Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S. Andrographis paniculata extract mediated green synthesis of CdO nanoparticles and its electrochemical and antibacterial studies. J Mater Sci Mater Electron. 2017;28(11):7991-8001. https://doi.org/10.1007/s10854-017-6503-8 DOI: https://doi.org/10.1007/s10854-017-6503-8

Rajalakshmi V, Cathrine L. Phytochemical screening and antimicrobial activity of ethanolic extract of Andrographis paniculata. J Pharmacogn Phytochem. 2016;5(2):175-7.

Singha PK, Roy S, Dey S. Antimicrobial activity of Andrographis paniculata. Fitoterapia. 2003;74(7-8):692-4. https://doi.org/10.1016/s0367-326x(03)00159-x PMid:14630176 DOI: https://doi.org/10.1016/S0367-326X(03)00159-X

Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, et al. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Front Microbiol. 2016;7:906. https://doi.org/10.3389/fmicb.2016.00906 PMid:27375610 DOI: https://doi.org/10.3389/fmicb.2016.00906

Keller NP. Fungal secondary metabolism: Regulation, function and drug discovery. Nat Rev Microbiol. 2019;17(3):167-80. https://doi.org/10.1038/s41579-018-0121-1 PMid:30531948 DOI: https://doi.org/10.1038/s41579-018-0121-1

Riga R, Happyana N, Hakim EH. Chemical constituents of Pestalotiopsis microspora HF 12440. J Appl Pharm Sci. 2019;9(1):108-24. https://doi.org/10.7324/japs.2019.90116 DOI: https://doi.org/10.7324/JAPS.2019.90116

Schulz B, Haas S, Junker C, Andrée N, Schobert M. Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci. 2015;109(1):39-45.

Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev. 2002;66(3):447-59. https://doi.org/10.1128/mmbr.66.3.447-459.2002 PMid:12208999 DOI: https://doi.org/10.1128/MMBR.66.3.447-459.2002

Khiralla A, Spina R, Varbanov M, Philippot S, Lemiere P, Slezack- Deschaumes S, et al. Evaluation of antiviral, antibacterial and antiproliferative activities of the endophytic fungus Curvularia papendorfii, and isolation of a new polyhydroxyacid. Microorganisms. 2020;8(9):1353. https://doi.org/10.3390/microorganisms8091353 PMid:32899776 DOI: https://doi.org/10.3390/microorganisms8091353

Radji M, Sumiati A, Rachmayani R, Elya B. Isolation of fungal endophytes from Garcinia mangostana and their antibacterial activity. Afr J Biotechnol. 2011;10(1):103-7.

Shang TW. Diversity and Bioactivities of Endophytic Fungi from Medicinal Plant Andrographis paniculata (Hempedu Bumi), [PhD’s Dissertation]. Malaysia: Monash University; 2016.

Munawar M, Muharni M, Ivantri I. Chemical constituen from an endophytic fungus Aspergillus sp (SbD5) isolated from sambiloto (Andrographis paniculata Nees). Microbiol Indones. 2015;9(2):82-8. https://doi.org/10.5454/mi.9.2.5 DOI: https://doi.org/10.5454/mi.9.2.5

Riga R, Happyana N, Hakim EH. Sesquiterpenes produced by Pestalotiopsis microspora HF 12440 isolated from Artocarpus heterophyllus. Nat Prod Res. 2020;34(15):2229-31. https://doi.org/10.1080/14786419.2019.1578764 DOI: https://doi.org/10.1080/14786419.2019.1578764

Ali H, Khyber MT, Khyber MS. Antimicrobial potentials of Eclipta alba by disc diffusion method production of biomass and medicinal metabolites through in vitro cultures in ajuga bracteosa view project establishment of plant in vitro cultures in Artimisia species for production of Indus. Afr J Biotechnol. 2011;10(39):7658-67.

Zaidan MR, Rain AN, Badrul AR, Adlin A, Norazah A, Zakiah I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop Biomed. 2005;22(2):165-70. PMid:16883283

Khairi VA, Etika SB, Suryelita S, Ulfah M, Riga R. Study of the antibacterial activity of endophytic fungus that colonize with the twig of Andrographis paniculata. Eksakta. 2021;21(2):137-44.

Riga R, Happyana N, Quentmeier A, Zammarelli C, Kayser O, Hakim EH. Secondary metabolites from Diaporthe lithocarpus isolated from Artocarpus heterophyllus. Nat Prod Res. 2019;35(14):1-5. https://doi.org/10.1080/14786419.2019.1672685 DOI: https://doi.org/10.1080/14786419.2019.1672685

Handayani D, Ananda N, Artasasta MA, Ruslan R, Fadriyanti O, Tallei TE. Antimicrobial activity screening of endophytic fungi extracts isolated from brown algae Padina sp. J Appl Pharm Sci. 2019;9(3):9-13. https://doi.org/10.7324/japs.2019.90302 DOI: https://doi.org/10.7324/JAPS.2019.90302

Haghgoo R, Mehran M, Afshari E, Zadeh HF, Ahmadvand M. Antibacterial effects of different concentrations of Althaea officinalis root extract versus 0.2% chlorhexidine and penicillin on Streptococcus mutans and Lactobacillus (in vitro). J Int Soc Prev Community Dent. 2017;7(4):180-5. PMid:28852633

Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front Microbiol. 2019;10:911. https://doi.org/10.3389/fmicb.2019.00911 PMid:31156565 DOI: https://doi.org/10.3389/fmicb.2019.00911

Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard- Akkari L, Oulahal N, et al. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models. Front Microbiol. 2019;10:829. https://doi. org/10.3389/fmicb.2019.00829 DOI: https://doi.org/10.3389/fmicb.2019.00829

Kursia S, Aksa R, Nolo MM. Antibacterial properties of endophytic fungi isolated from daun kelor (Moringa oleifera Lam.). Pharmauho J Farmasi Sains Kesehatan. 2018;4(1):30-3. https://doi.org/10.33772/pharmauho.v4i1.4631 DOI: https://doi.org/10.33772/pharmauho.v4i1.4631

Pandey A, Negi PS. Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Nat Prod Res. 2018;32(10):1189-92. https://doi.org/10.1080/14786419.2017.1323209 PMid:28475362 DOI: https://doi.org/10.1080/14786419.2017.1323209

Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J. Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol. 2008;78(2):241-7. https://doi.org/10.1007/s00253-007-1305-1 DOI: https://doi.org/10.1007/s00253-007-1305-1

Xu WF, Hou XM, Yao FH, Zheng N, Li J, Wang CY, et al. Xylapeptide A, an antibacterial cyclopentapeptide with an uncommon L-pipecolinic acid moiety from the associated fungus Xylaria sp. (GDG-102). Sci Rep. 2017;7(1):6937. https://doi.org/10.1038/s41598-017-07331-4 PMid:28761094 DOI: https://doi.org/10.1038/s41598-017-07331-4

Downloads

Published

2021-11-15

How to Cite

1.
Suryelita S, Riga R, Etika SB, Ulfah M, Artasasta MA. Antibacterial Screening of Endophytic Fungus Xylaria sp. derived from Andrographis paniculata (Sambiloto). Open Access Maced J Med Sci [Internet]. 2021 Nov. 15 [cited 2024 Nov. 14];9(A):971-5. Available from: https://oamjms.eu/index.php/mjms/article/view/7475