Failure Rate of Orthodontic Mini-screw after Insertion using 3D Printed Guide versus Conventional Free Hand Placement Technique: Split Mouth Randomized Clinical Trial

Authors

  • Hadir Aboshady Department of Orthodontics, Faculty of Dentistry, Cairo University, Giza, Egypt
  • Amr Mohamed Aly Abouelezz Department of Orthodontics, Faculty of Dentistry, Cairo University, Giza, Egypt
  • Mai Hamdy Aboul Fotouh Department of Orthodontics, Faculty of Dentistry, Cairo University, Giza, Egypt
  • Sherif Aly Mahmoud Elkordy Department of Orthodontics, Faculty of Dentistry, Cairo University, Giza, Egypt

DOI:

https://doi.org/10.3889/oamjms.2022.7616

Keywords:

Orthodontic mini-screw, 3D printed guide, Mini-implant, Temporary anchorage device, Mini screw insertion, Mini screw positioning, Surgical guide, Three-dimensional digital insertion guide, Failure rate, Mini-screw instability, Mini-screw loss, Root proximity

Abstract

AIM: The aim of the study is to assess the failure rate after mini-screw insertion using digital three-dimensional printed guide versus free hand placement technique through a well-designed split-mouth randomized clinical trial.

METHODS: Forty-two patients with mean age (22.56 ± 3.47 years) indicated for upper first premolars’ extraction (Bimaxillary protrusion and Class II division 1) were included in the study. Their maxillary quadrants were randomized to receive mini-screws as means of anchorage. Pre-operative maxillary cone-beam computed tomography scan with ultra-low-dose protocol was imaged and the maxillary arch was scanned using intra-oral scanner to obtain stereo-lithographic format file for the maxillary arch. Using in vivo and Rapidform Geomagic Studio® _Softwares the mini-screws were planned to be inserted in the buccal inter-radicular space between the upper second premolar and first molar in both right and left sides. For the intervention sides; digital three-dimensional guides were designed and printed for mini-screw insertion. Failure of the mini-screws was assessed till 3 months of loading.

RESULTS: There was no statistical significant difference in failure rate of mini-screws in both intervention (7.14%) and control sides (16.6%), with weak and moderate correlation between the root proximity and the mini-screws failure in intervention and control groups respectively.

CONCLUSIONS: Using a digital three-dimensional printed guide for mini-screw insertion had no effect on the failure rate of the inserted mini-screws.

REGISTRATION: ClinicalTrials.gov Identifier: NCT03653078.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Nahidh M, Al Azzawi A, Al-Badri S. Understanding anchorage in orthodontics. J Dent Oral Disord. 2019;4(3):1-5.

Kyung HM, Park HS, Bae SM, Sung JH, Kim IB. Development of orthodontic micro-implants for intraoral anchorage. J Clin Orthod. 2003;37(6):321-8; quiz 314 PMid:12866214

Kravitz N, Kusnoto B. Risks and complications of orthodontic miniscrews. Am J Orthod Dentofac Orthop. 2007;131 Suppl 4:S43-51. https://doi.org/10.1016/j.ajodo.2006.04.027 PMid:17448385 DOI: https://doi.org/10.1016/j.ajodo.2006.04.027

Papadopoulos M, Tarawneh F. Skeletal Anchorage in Orthodontic Treatment of Class II Malocclusion: Contemporary Applications of Orthodontic Implants, Miniscrew Implantsand Mini Plates. 1st ed. Amsterdam, Netherlands: Elsevier Ltd.; 2015. DOI: https://doi.org/10.1177/0974909820150113

Papadopoulos M, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(5):e6-15. https://doi.org/10.1016/j.tripleo.2006.11.022 PMid:17317235 DOI: https://doi.org/10.1016/j.tripleo.2006.11.022

Dalessandri D, Salgarello S, Dalessandri M, Lazzaroni E, Piancino M, Paganelli C, et al. Determinants for success rates of temporary anchorage devices in orthodontics: A meta-analysis (n>50). Eur J Orthod. 2014;36(3):303-13. https://doi.org/10.1093/ejo/cjt049 PMid:23873818

Manni A, Cozzani M, Tamborrino F, de Rinaldis S, Menini A. Factors influencing the stability of miniscrews. A retrospective study on 300 miniscrews. Eur J Orthod. 2011;33(4):388-95. https://doi.org/10.1093/ejo/cjq090 PMid:20926556 DOI: https://doi.org/10.1093/ejo/cjq090

Maino B, Pagin P, Di Blasio A. Success of miniscrews used as anchorage for orthodontic treatment: Analysis of different factors. Prog Orthod. 2012;13(3):202-9. https://doi.org/10.1016/j.pio.2012.04.002 PMid:23260530 DOI: https://doi.org/10.1016/j.pio.2012.04.002

Aly S, Alyan D, Fayed M, Alhammadi M, Mostafa Y. Success rates and factors associated with failure of temporary anchorage devices: A prospective clinical trial. J Investig Clin Dent. 2018;9(3):e12331. https://doi.org/10.1111/jicd.12331 PMid:29512336 DOI: https://doi.org/10.1111/jicd.12331

Min K, Kim S, Kang K, Cho JH, Lee EH, Chang NY, et al. Root proximity and cortical bone thickness effects on the success rate of orthodontic micro-implants using cone beam computed tomography. Angle Orthod. 2012;82(6):1014-21. https://doi.org/10.2319/091311-593.1 PMid:22417652 DOI: https://doi.org/10.2319/091311-593.1

Gintautaitė G, Gaidytė A. Surgery-related factors affecting the stability of orthodontic mini implants screwed in alveolar process interdental spaces: A systematic literature review. Stomatologija. 2017;19(1):10-8. PMid:29243679

Kuroda S, Yamada K, Deguchi T, Hashimoto T, Kyung H, Yamamotod T. Root proximity is a major factor for screw failure in orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2007;131 Suppl 4:68-73. https://doi.org/10.1016/j.ajodo.2006.06.017 PMid:17448389 DOI: https://doi.org/10.1016/j.ajodo.2006.06.017

Lee Y, Kim J, Baek S, Kim T, Chang Y. Root and bone response to the proximity of a mini-implant under orthodontic loading. Angle Orthod. 2010;80(3):452-8. https://doi.org/10.2319/070209-369.1 PMid:20050736 DOI: https://doi.org/10.2319/070209-369.1

Baik U, Kook Y, Tanaka O, Kim K. Root contact with miniscrews during mesiodistal movement of the molar. J World Fed Orthod. 2014;3(2):e95-100. DOI: https://doi.org/10.1016/j.ejwf.2014.02.001

Suzuki E, Buranastidporn B. An adjustable surgical guide for miniscrew placement. J Clin Orthod. 2005;39(10):588-90. PMid:16244426

Morea C, Dominguez G, Wuo A, Tortamano A. Surgical guide for optimal positioning of mini-implants. J Clin Orthod. 2005;39(5):317-21. PMid:15961891

Cousley RR, Parberry DJ. Surgical stents for accurate miniscrew insertion. J Clin Orthod. 2006;40(7):412-7; quiz 419. PMid:16902252

Kim S, Kang J, Choi B, Nelson G. Clinical application of a stereo-lithographic surgical guide for mini-implants. World J Orthod. 2008;9(4):371-82. PMid:19146019

Qiu L, Haruyama N, Suzuki S, Yamada D, Obayashi N. Accuracy of orthodontic miniscrew implantation guided by stereolithographic surgical stent based on cone-beam CT-derived 3D images. Angle Orthod. 2012;82(2):284-93. https://doi.org/10.2319/033111-231.1 PMid:21848407 DOI: https://doi.org/10.2319/033111-231.1

Hourfar J, Bister D, Kanavakis G, Lisson J, Ludwig B. Influence of interradicular and palatal placement of orthodontic mini-implants on the success (survival) rate. Head Face Med. 2017;13(1):14. https://doi.org/10.1186/s13005-017-0147-z PMid:28615027 DOI: https://doi.org/10.1186/s13005-017-0147-z

Lim J, Won H, Yoon S. Quantitative evaluation of cortical bone thickness and root proximity at maxillary interradicular sites for orthodontic mini-implant placement. Clin Anat. 2008;21(6):486-91. https://doi.org/10.1002/ca.20671 PMid:18698651 DOI: https://doi.org/10.1002/ca.20671

Schneider PP, Kim KB, Da Costa Monini A, Dos Santos-Pinto A, Gandini LG Jr. Which one closes extraction spaces faster: En masse retraction or two-step retraction? A randomized prospective clinical trial. Angle Orthod. 2019;89(6):855-61. https://doi.org/10.2319/101618-748.1 PMid:31259616 DOI: https://doi.org/10.2319/101618-748.1

Jung B, Liechti T. Prognostic parameters contributing to palatal implant failures: A long-term survival analysis of 239 patients. Clin Oral Implants Res. 2012;23(6):746-50. https://doi.org/10.1111/j.1600-0501.2011.02197.x PMid:21545530 DOI: https://doi.org/10.1111/j.1600-0501.2011.02197.x

Rocha R, Ritter D, Locks A, De Paula L, Santana R. Ideal treatment protocol for cleft lip and palate patient from mixed to permanent dentition. Am J Orthod Dentofacial Orthop. 2012;141(4):S140-8. https://doi.org/10.1016/j.ajodo.2011.03.024 PMid:22449594 DOI: https://doi.org/10.1016/j.ajodo.2011.03.024

Thiesen G, Gribel F, Freitas M, Mota P. Facial asymmetry: A current review. Dental Press J Orthod. 2015;20(6):110-25. https://doi.org/10.1590/2177-6709.20.6.110-125.sar PMid:26691977 DOI: https://doi.org/10.1590/2177-6709.20.6.110-125.sar

Bae M, Kim J, Park J, Cha J, Kim H. Accuracy of miniscrew surgical guides assessed from cone-beam computed tomography and digital models. Am J Orthod Dentofacial Orthop. 2012;143(6):893-901. https://doi.org/10.1016/j.ajodo.2013.02.018 PMid:23726340 DOI: https://doi.org/10.1016/j.ajodo.2013.02.018

Cassetta M, Altieri F, di Giorgio R, Barbato E. Palatal orthodontic miniscrew insertion using a CAD-CAM surgical guide: Description of a technique. Int J Oral Maxillofacial Surg. 2018;47(9):1195-8. https://doi.org/10.1016/j.ijom.2018.03.018 PMid:29653870 DOI: https://doi.org/10.1016/j.ijom.2018.03.018

Kim S, Choi Y, Hwang E, Chung K, Kook Y, Nelson G. Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2007;131 Suppl 4:S82-9. https://doi.org/10.1016/j.ajodo.2006.01.027 PMid:17448391 DOI: https://doi.org/10.1016/j.ajodo.2006.01.027

Liu H, Liu D, Wang G, Wang C, Zhao Z. Accuracy of surgical positioning of orthodontic miniscrews with a computer-aided design and manufacturing template. Am J Orthod Dentofacial Orthop. 2010;137(6):728.e1-10. PMid:20685519 DOI: https://doi.org/10.1016/j.ajodo.2009.12.025

Wang Y, Yu J, Lo L, Hsu P, Lin C. Developing customized dental miniscrew surgical template from thermoplastic polymer material using image superimposition, CAD system, and 3D printing. Biomed Res Int. 2017;2017:1906197. https://doi.org/10.1155/2017/1906197 PMid:28280726 DOI: https://doi.org/10.1155/2017/1906197

Ahmed D. Ultra-low-dose versus normal-dose scan protocol of planmeca promax 3 D mid cbct machine in detection of second mesiobuccal root canal in maxillary molars: An ex vivo study. Egypt Dent J. 2019;65(1):221-9. DOI: https://doi.org/10.21608/edj.2015.71405

Dean R. The periodontal ligament: Development, anatomy and function. J Oral Health Dent Manag. 2017;16(6):1-7.

Moon C, Lee D, Lee H, Im JB. Factors associated with the success rate of orthodontic miniscrews placed in the upper and lower posterior buccal region. Angle Orthod. 2008;78(1):101-6. DOI: https://doi.org/10.2319/121706-515.1

Crismani A, Bertl M, Čelar A, Bantleon H, Burstone C. Miniscrews in orthodontic treatment: Review and analysis of published clinical trials. Am J Orthod Dentofacial Orthop. 2010;137(1):108-13. https://doi.org/10.1016/j.ajodo.2008.01.027 PMid:20122438 DOI: https://doi.org/10.1016/j.ajodo.2008.01.027

Alharbi F, Almuzian M, Bearn D. Miniscrews failure rate in orthodontics: Systematic review and meta-analysis. Eur J Orthod. 2018;40(5):519-30. https://doi.org/10.1093/ejo/cjx093 PMid:29315365 DOI: https://doi.org/10.1093/ejo/cjx093

Dalessandri D, Salgarello S, Dalessandri M, Lazzaroni E, Piancino M, Paganelli C, et al. Determinants for success rates of temporary anchorage devices in orthodontics: A meta-analysis (n>50). Eur J Orthod. 2014;36(3):303-13. https://doi.org/10.1093/ejo/cjt049 PMid:23873818 DOI: https://doi.org/10.1093/ejo/cjt049

Hong S, Kusnoto B, Kim E, Begole E, Hwang H, Lim H. Prognostic factors associated with the success rates of posterior orthodontic miniscrew implants: A subgroup meta-analysis. Korean J Orthod. 2016;46(2):111-26. https://doi.org/10.4041/kjod.2016.46.2.111 PMid:27019826 DOI: https://doi.org/10.4041/kjod.2016.46.2.111

Papageorgiou S, Zogakis I, Papadopoulos M. Failure rates and associated risk factors of orthodontic miniscrew implants: A meta-analysis. Am J Orthod Dentofacial Orthop. 2012;142(5):577-95. https://doi.org/10.1016/j.ajodo.2012.05.016 PMid:23116500 DOI: https://doi.org/10.1016/j.ajodo.2012.05.016

Mohammed H, Wafaie K, Rizk M, Almuzian M, Sosly R, Bearn D. Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: A systematic review and meta-analysis. Prog Orthod. 2018;19(1):36. https://doi.org/10.1186/s40510-018-0225-1 PMid:30246217 DOI: https://doi.org/10.1186/s40510-018-0225-1

Melo A, Andrighetto A, Hirt S, Bongiolo A, Silva S, Silva M. Risk factors associated with the failure of miniscrews-a ten-year cross sectional study. Braz Oral Res. 2016;30(1):e124. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0124 PMid:27783770 DOI: https://doi.org/10.1590/1807-3107BOR-2016.vol30.0124

Watanabe H, Deguchi T, Hasegawa M, Ito M, Kim S, Takano- Yamamoto T. Orthodontic miniscrew failure rate and root proximity, insertion angle, bone contact length, and bone density. Orthod Craniofac Res. 2013;16(1):44-55. https://doi.org/10.1111/ocr.12003 PMid:23311659 DOI: https://doi.org/10.1111/ocr.12003

Downloads

Published

2022-01-06

How to Cite

1.
Aboshady H, Abouelezz AMA, Aboul Fotouh MH, Elkordy SAM. Failure Rate of Orthodontic Mini-screw after Insertion using 3D Printed Guide versus Conventional Free Hand Placement Technique: Split Mouth Randomized Clinical Trial. Open Access Maced J Med Sci [Internet]. 2022 Jan. 6 [cited 2024 Apr. 25];10(D):6-13. Available from: https://oamjms.eu/index.php/mjms/article/view/7616