Systematic Review: A Comparison between Vancomycin and Daptomycin for Sepsis Infection Antibiotic Therapy

Authors

  • Ratih Puspita Febrinasari Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia https://orcid.org/0000-0001-9767-3284
  • Benedictus Benedictus Graduate Programme, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia https://orcid.org/0000-0003-1485-9193
  • Akhmad Azmiardi Doctoral Program of Public Health, Universitas Sebelas Maret, Surakarta, Indonesia; Department of Public Health, Faculty of Public Health, Universitas Veteran Bangun Nusantara, Sukoharjo, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.7618

Keywords:

Sepsis, Methicillin-resistant Staphylococcus aureus, Daptomycin, Vancomycin

Abstract

BACKGROUND: Sepsis is a dangerous condition that threatens life because of immune system dysregulation caused by an infection resulting in organ failure. One of the most common resistant strain bacteria that can cause sepsis is Methicillin-resistant Staphylococcus aureus (MRSA). Vancomycin is the first-line therapy for treating sepsis infection caused by MRSA, but recently there have been some MRSA strains that are resistant to vancomycin therapy.

AIM: This study aimed to review comparison between vancomycin and daptomycin for sepsis infection antibiotics therapy.

MATERIALS AND METHODS: This research was a systematic review using three databases such as PubMed, ProQuest, and ScienceDirect. The journal articles included in this study were about randomized controlled trial (RCT) studies published from 2011 to 2020.

RESULTS: This research included seven RCT studies, but none of them discuss the usage of daptomycin for sepsis treatment caused by MRSA. They discuss more the effect of dose, method of administration, and side effects of vancomycin therapy in relation to the outcome of the patient.

CONCLUSIONS: Because of the lack of RCT articles that conducted experiments of daptomycin usage for sepsis treatment caused by MRSA infection, this research could not compare the effectiveness between vancomycin and daptomycin. However, from some case reports included in this research, there was evidence that the usage of daptomycin base after vancomycin treatment failure will cause another treatment failure.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801. https://doi.org/10.1001/JAMA.2016.0287 PMid:26903338 DOI: https://doi.org/10.1001/jama.2016.0287

Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259-72. https://doi.org/10.1164/rccm.201504-0781oc PMid:26414292 DOI: https://doi.org/10.1164/rccm.201504-0781OC

World Health Organization. Sepsis. Geneva: World Health Organization; 2018.

Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit Care. 2017;21(1):211. https://doi.org/10.1186/s13054-017-1801-3 PMid:28807042 DOI: https://doi.org/10.1186/s13054-017-1801-3

Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298(15):1763-71. https://doi.org/10.1001/jama.298.15.1763 PMid:17940231 DOI: https://doi.org/10.1001/jama.298.15.1763

ECDC. European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2014. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2015. p. 118.

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27. https://doi.org/10.1016/S1473-3099(17)30753-3 PMid:29276051 DOI: https://doi.org/10.1016/S1473-3099(17)30753-3

Lambert M. IDSA Guidelines on the Treatment of MRSA Infections in Adults and Children; 2011.

Casapao AM, Leonard SN, Davis SL, Lodise TP, Patel N, Goff DA, et al. Clinical outcomes in patients with heterogeneous vancomycin-intermediate Staphylococcus aureus bloodstream infection. Antimicrob Agents Chemother. 2013;57(9):4252-9. https://doi.org/10.1128/aac.00380-13 PMid:23796929 DOI: https://doi.org/10.1128/AAC.00380-13

Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res. 2020;21:169-76. https://doi.org/10.1016/j.jare.2019.10.005 PMid:32071785 DOI: https://doi.org/10.1016/j.jare.2019.10.005

Šundalić S, Ćurčić E, Pavić Ž, Gornik I, Brajković AV. Effect of vancomycin, teicoplanin, and linezolid on renal function of critically ill patients with sepsis. URINE. 2019;1:3-7. https://doi.org/10.1016/j.urine.2020.05.003 DOI: https://doi.org/10.1016/j.urine.2020.05.003

Paul M, Bronstein E, Yahav D, Goldberg E, Bishara J, Leibovici L. External validity of a randomised controlled trial on the treatment of severe infections caused by MRSA. BMJ Open. 2015;5(9):e008838. https://doi.org/10.1136/bmjopen-2015-008838 PMid:26362666 DOI: https://doi.org/10.1136/bmjopen-2015-008838

Emonet S, Charles PG, Harbarth S, Stewardson AJ, Renzi G, Uckay I, et al. Rapid molecular determination of methicillin resistance in staphylococcal bacteraemia improves early targeted antibiotic prescribing: A randomized clinical trial. Clin Microbiol Infect. 2016;22(11):946.e9-15. https://doi.org/10.1016/j.cmi.2016.07.022 PMid:27475737 DOI: https://doi.org/10.1016/j.cmi.2016.07.022

Niederman MS, Chastre J, Solem CT, Wan Y, Gao X, Myers DE, et al. Health economic evaluation of patients treated for nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus: Secondary analysis of a multicenter randomized clinical trial of vancomycin and linezolid. Clin Ther. 2014;36(9):1233-43.e1. https://doi.org/10.1016/j.clinthera.2014.06.029 PMid:25066668 DOI: https://doi.org/10.1016/j.clinthera.2014.06.029

Berthaud R, Benaboud S, Hirt D, Genuini M, Oualha M, Castelle M, et al. Early bayesian dose adjustment of vancomycin continuous infusion in children in a randomized controlled trial. Antimicrob Agents Chemother. 2019;63(12):e01102-19. https://doi.org/10.1128/AAC.01102-19 PMid:31591117 DOI: https://doi.org/10.1128/AAC.01102-19

Chytra I, Stepan M, Benes J, Pelnar P, Zidkova A, Bergerova T, et al. Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: A randomized open-label controlled trial. Crit Care. 2012;16(3):R113. https://doi.org/10.1186/cc11405 PMid:22742765 DOI: https://doi.org/10.1186/cc11405

Quist SR, Fierlbeck G, Seaton RA, Loeffler J, Chaves RL. Comparative randomised clinical trial against glycopeptides supports the use of daptomycin as first-line treatment of complicated skin and soft-tissue infections. Int J Antimicrob Agents. 2012;39(1):90-1. https://doi.org/10.1016/j.ijantimicag.2011.08.007 PMid:21982144 DOI: https://doi.org/10.1016/j.ijantimicag.2011.08.007

Konychev A, Heep M, Moritz RK, Kreuter A, Shulutko A, Fierlbeck G, et al. Safety and efficacy of daptomycin as firstline treatment for complicated skin and soft tissue infections in elderly patients: An open-label, multicentre, randomized phase IIIb trial. Drugs Aging. 2013;30(10):829-36. https://doi.org/10.1007/s40266-013-0114-8 PMid:23990341 DOI: https://doi.org/10.1007/s40266-013-0114-8

Fowler VG, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653-65. https://doi.org/10.1056/nejmoa053783 PMid:16914701 DOI: https://doi.org/10.1056/NEJMoa053783

Sakoulas G, Moise PA, Casapao AM, Nonejuie P, Olson J, Okumura CY, et al. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin Ther. 2014;36(10):1317-33. https://doi.org/10.1016/j.clinthera.2014.05.061 DOI: https://doi.org/10.1016/j.clinthera.2014.05.061

Fowler VG, Das AF, Lipka-Diamond J, Schuch R, Pomerantz R, Jáuregui-Peredo L, et al. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. J Clin Invest. 2020;130(7):3750-60. https://doi.org/10.1172/JCI136577 PMid:32271718 DOI: https://doi.org/10.1172/JCI136577

van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of mortality in Staphylococcus aureus bacteremia. Clin Microbiol Rev. 2012;25(2):362-86. https://doi.org/10.1128/CMR.05022-11 PMid:22491776 DOI: https://doi.org/10.1128/CMR.05022-11

Shariati A, Dadashi M, Moghadam MT, van Belkum A, Yaslianifard S, Darban-Sarokhalil D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: A systematic review and metaanalysis. Sci Rep. 2020;10(1):12689. https://doi.org/10.1038/s41598-020-69058-z PMid:32728110 DOI: https://doi.org/10.1038/s41598-020-69058-z

Ye ZK, Li C, Zhai SD. Guidelines for therapeutic drug monitoring of vancomycin: A systematic review. PLoS One. 2014;9(6):e99044. https://doi.org/10.1371/journal.pone.0099044 PMid:24932495 DOI: https://doi.org/10.1371/journal.pone.0099044

Men P, Li HB, Zhai SD, Zhao RS. Association between the AUC0-24/MIC ratio of vancomycin and its clinical effectiveness: A systematic review and meta-analysis. PLoS One. 2016;11(1):e0146224. https://doi.org/10.1371/journal.pone.0146224 PMid:26731739 DOI: https://doi.org/10.1371/journal.pone.0146224

Jeurissen A, Sluyts I, Rutsaert R. A higher dose of vancomycin in continuous infusion is needed in critically ill patients. Int J Antimicrob Agents. 2011;37(1):75-7. https://doi.org/10.1016/j.ijantimicag.2010.09.004 PMid:21074374 DOI: https://doi.org/10.1016/j.ijantimicag.2010.09.004

Vandecasteele SJ, de Vriese AS, Tacconelli E. The pharmacokinetics and pharmacodynamics of vancomycin in clinical practice: Evidence and uncertainties. J Antimicrob Chemother. 2013;68(4):743-8. https://doi.org/10.1093/jac/dks495 PMid:23249839 DOI: https://doi.org/10.1093/jac/dks495

Hermsen ED, Hanson M, Sankaranarayanan J, Stoner JA, Florescu MC, Rupp ME. Clinical outcomes and nephrotoxicity associated with vancomycin trough concentrations during treatment of deep-seated infections. Expert Opin Drug Saf. 2010;9(1):9-14. https://doi.org/10.1517/14740330903413514 PMid:20021290 DOI: https://doi.org/10.1517/14740330903413514

Bosso JA, Nappi J, Rudisill C, Wellein M, Bookstaver PB, Swindler J, et al. Relationship between vancomycin trough concentrations and nephrotoxicity: A prospective multicenter trial. Antimicrob Agents Chemother. 2011;55(12):5475-9. https://doi.org/10.1128/AAC.00168-11 PMid:21947388 DOI: https://doi.org/10.1128/AAC.00168-11

McKamy S, Hernandez E, Jahng M, Moriwaki T, Deveikis A, Le J. Incidence and risk factors influencing the development of vancomycin nephrotoxicity in children. J Pediatr. 2011;158(3):422-6. https://doi.org/10.1016/j.jpeds.2010.08.019 PMid:20888013 DOI: https://doi.org/10.1016/j.jpeds.2010.08.019

Cano EL, Haque NZ, Welch VL, Cely CM, Peyrani P, Scerpella EG, et al. Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: Retrospective analysis of the IMPACTHAP database. Clin Ther. 2012;34(1):149-57. https://doi.org/10.1016/j.clinthera.2011.12.013 PMid:22284995 DOI: https://doi.org/10.1016/j.clinthera.2011.12.013

Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M. Bacteriophage lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob Agents Chemother. 2017;61(7):e02666-16. https://doi.org/10.1128/AAC.02666-16 PMid:28461319 DOI: https://doi.org/10.1128/AAC.02666-16

Indiani C, Sauve K, Raz A, Abdelhady W, Xiong YQ, Cassino C, et al. The antistaphylococcal lysin, CF-301, activates key host factors in human blood to potentiate methicillin-resistant Staphylococcus aureus bacteriolysis. Antimicrob Agents Chemother. 2019;63(4):e02291-18. https://doi.org/10.1128/AAC.02291-18 PMid:30670427 DOI: https://doi.org/10.1128/AAC.02291-18

Schuch R, Lee HM, Schneider BC, Sauve KL, Law C, Khan BK, et al. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methici llinresistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis. 2014;209(9):1469-78. https://doi.org/10.1093/infdis/jit637 PMid:24286983 DOI: https://doi.org/10.1093/infdis/jit637

Watson A, Sauve K, Cassino C, Schuch R. Exebacase demonstrates in vitro synergy with a broad range of antibiotics against both methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2020;64(2):e01885-19. https://doi.org/10.1128/aac.01885-19 PMid:31712212 DOI: https://doi.org/10.1128/AAC.01885-19

Downloads

Published

2021-12-03

How to Cite

1.
Febrinasari RP, Benedictus B, Azmiardi A. Systematic Review: A Comparison between Vancomycin and Daptomycin for Sepsis Infection Antibiotic Therapy. Open Access Maced J Med Sci [Internet]. 2021 Dec. 3 [cited 2024 Apr. 25];9(F):683-9. Available from: https://oamjms.eu/index.php/mjms/article/view/7618

Issue

Section

Systematic Review Article

Categories

Most read articles by the same author(s)